线性回归推导Ng

在这里插入图片描述
大佬在写数学时候 一笔带过 在加上之前学过的东西都还给老师了 一眼看起来一脸懵
其实上面很简单 高中数学都可以解决 只不过时间过去太久了有点生疏了!
高中数学 偏导数 复合函数的偏导数
所谓复合函数 即
f ( x ) = ( x 3 + 3 y − 2 ) 2 f(x)=(x^3+3y-2)^2 f(x)=(x3+3y2)2 将内部看作一个整体z
z = x 3 + 3 y − 2 z=x^3+3y-2 z=x3+3y2
∂ f ∂ x = ∂ f ∂ z ∗ ∂ z ∂ x = 2 ∗ ( x 3 + 3 y − 2 ) ∗ 3 x 2 \frac{\partial f}{\partial x}=\frac{\partial f}{\partial z}*\frac{\partial z}{\partial x}=2*(x^3+3y-2)*3x^2 xf=zfxz=2(x3+3y2)3x2 中间的第一个的分母可以和第二个的分子约掉,链式法则
∂ f ∂ z = 2 ∗ ( x 3 + 3 y − 2 ) \frac{\partial f}{\partial z}=2*(x^3+3y-2) \quad zf=2(x3+3y2) 因为 x n 的 导 数 等 于 n x n − 1 x^n的导数等于nx^{n-1} xnnxn1
∂ z ∂ x = 3 x 2 \frac{\partial z}{\partial x}=3x^2 \quad xz=3x2

导数常用法则

  • 常数项的导数等于零
  • kx的导数等于k
  • x n 导 数 等 于 n x n − 1 x^n 导数等于 nx^{n-1} xnnxn1
  • 多元导数,将另外的看作常数

那么最初的问题就好办了

∂ ∂ θ j J ( θ 0 , θ 1 ) = ∂ ∂ θ j ∗ 1 2 m ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) 2 = ∂ ∂ θ j ∗ 1 2 m ∑ i = 1 m ( θ 0 + θ 1 x ( i ) − y ( i ) ) 2 \frac{\partial}{\partial\theta_{j}}J(\theta_{0},\theta_{1})=\frac{\partial}{\partial\theta_{j}}*\frac{1}{2m}\sum\limits^m_{i=1}(h_{\theta}(x^{(i)-y^{(i)}})^2 \\ \quad \quad= \frac{\partial}{\partial\theta_j}*\frac{1}{2m}\sum\limits^m_{i=1}(\theta_0+\theta_1x^{(i)}-y^{(i)})^2 θjJ(θ0,θ1)=θj2m1i=1m(hθ(x(i)y(i))2=θj2m1i=1m(θ0+θ1x(i)y(i))2

此处的求和操作并不会对求导产生影响 所以大胆的带上累加项 ∑ i = 1 m \quad\sum\limits^m_{i=1} i=1m

θ 0 \theta_0 θ0 进行求导 ∂ ∂ θ 0 J ( θ 0 , θ 1 ) = ∑ i = 1 m ∗ 2 ∗ 1 2 m ∗ ( θ 0 + θ 1 x ( i ) − y ( i ) ) ) ∗ 1 \frac{\partial}{\partial\theta_0}J(\theta_0,\theta_1)=\sum\limits^m_{i=1}*2*\frac{1}{2m}*(\theta_0+\theta_1x^{(i)}-y^{(i))})*1 θ0J(θ0,θ1)=i=1m22m1(θ0+θ1x(i)y(i)))1

θ 0 j = 0 : ∂ ∂ θ 0 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \theta_0j=0:\frac{\partial}{\partial\theta_0}J(\theta_0,\theta_1)=\frac{1}{m}\sum\limits^m_{i=1}( h_\theta(x^{(i)})-y^{(i)} ) θ0j=0:θ0J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))

θ 1 \theta_1 θ1 进行求导 ∂ ∂ θ 1 J ( θ 0 , θ 1 ) = ∑ i = 1 m 2 ∗ 1 2 m ∗ ( θ 0 + θ 1 x ( i ) − y ( i ) ) ∗ x ( i ) \frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=\sum\limits^m_{i=1}2*\frac{1}{2m}*(\theta_0+\theta_1x^{(i)}-y^{(i)})*x^{(i)} θ1J(θ0,θ1)=i=1m22m1(θ0+θ1x(i)y(i))x(i)

θ 1 j = 1 : ∂ ∂ θ 1 J ( θ 0 , θ 1 ) = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) ∗ x ( i ) \theta_1j=1:\frac{\partial}{\partial\theta_1}J(\theta_0,\theta_1)=\frac{1}{m}\sum\limits^m_{i=1}( h_\theta(x^{(i)})-y^{(i)})*x^{(i)} θ1j=1:θ1J(θ0,θ1)=m1i=1m(hθ(x(i))y(i))x(i)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值