win10+Tensorflow2 + cuda +RTX 3080 +cudnn 安装

最近准备开始深度学习相关内容的学习,会在公众号进行同步更新我的学习记录等相关文章,大家可以在后台回复相应的天数,获取相应的代码和数据。

1.前言

配置:

  • 系统:Window10
  • CPU:i7-10700F
  • GPU(显卡): RTX3080
  • cuda:CUDA11.1.0_win10_network
  • cudnn: cudnn-11.1-windows-x64-v8.0.5.39
  • tensorflow:tensorflow-gpu 2.4.1

NVIDIA GeForce RTX 3080不需要用测试版(tf_nightly_gpu-2.5.0),tensorflow-gpu 2.4.1可以用!
NVIDIA GeForce RTX 3080不需要用测试版(tf_nightly_gpu-2.5.0),tensorflow-gpu 2.4.1可以用!
NVIDIA GeForce RTX 3080不需要用测试版(tf_nightly_gpu-2.5.0),tensorflow-gpu 2.4.1可以用!

在这里插入图片描述

2.Anaconda安装

官网传送门:【Anaconda】

点它(红框框)
在这里插入图片描述
来吧,做选择

在这里插入图片描述
打开Anaconda然后你就可以看到这个界面,我们进入Environments中去
在这里插入图片描述
然后创建一个Tensorflow-gpu的虚拟环境,如图,记住python版本要下调到python3.6,不能比这个高了。
在这里插入图片描述
然后在里面把Tensorflow-gpu安装了。
在这里插入图片描述

3.cuda安装

CUDA官网:【cuda】

这个安装有时候需要科学上网,可以加我微信给你分享一点不一样的东西。

在这里插入图片描述
下载完成后傻瓜式安装即可。

4.cuDNN安装

cuDNN官网:【cuDNN】

这一步,官网可能需要的填一份调查问卷什么的,填它就好了。

在这里插入图片描述
然后下载与CUDA相对应的版本

在这里插入图片描述
下载完成后,你会得到一个文件夹,里面有include、lib64、bin三个文件,将它复制到CUDA的文件夹(C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1)。
在这里插入图片描述
最后一步,将下面四个路径添加到环境变量当中去。
在这里插入图片描述

安装tensorflow-gpu

pip install tensorflow-gpu

5.代码处理

在python代码中加入以下代码,将代码的运行放到GPU上

gpus = tf.config.list_physical_devices("GPU")
print(gpus)
if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    
    tf.config.set_visible_devices([gpu0],"GPU") 

检查TensorFlow版本

import tensorflow as tf
print(tf.__version__)

6.如果还不能解决,看这里

检查一下是否提示缺失cusolver64_10.dll文件
在这里插入图片描述
将中的cusolver64_11.dll

“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\cusolver64_11.dll”

改为cusolver64_10.dll

“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin\cusolver64_10.dll”

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值