小白入门深度学习 | 6-4:ResNet-50(2015年)详解

本文详细介绍了ResNet-50,一种为解决深度卷积网络在增加深度时出现的退化问题而设计的残差网络结构。ResNet通过残差模块实现了恒等映射,确保网络性能不因深度增加而下降。内容包括算法背景、残差模块的设计原理以及ResNet-50的具体网络结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

由CNN的基本理论可知,基于CNN模型的图像分类性能与网络模型的深度存在重要的关系。一般而言,网络模型的深度越深,网络模型的拟合能力就越强。但是不断地增加网络模型的深度,不但无法提高网络模型的准确度,反而出现了梯度消失现象,产生了更高的误差。最终使CNN模型的图像的分类性能受损。为解决上述问题,本文详细介绍残差网络(Residual Networks,ResNet)的结构特点,在此基础上,研究不同深度的ResNet模型的图像分类性能。

一、算法简介

残差网络ResNet在2015年由何恺明等提出,因为它简单与实用并存,随后很多研究都是建立在ResNet-50或者ResNet-101基础上完成。

ResNet主要解决深度卷积网络在深度加深时候的“退化”问题。在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题Szegedy提出BN层后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。但是作者发现加了BN后再加大深度仍然不容易收敛,其提到了第二个问题–准确率下降问题:层级大到一定程度时准确率就会饱和,然后迅速下降,这种下降即不是梯度消失引起的也不是过拟合造成的,而是由于网络过于复杂,以至于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值