哈,我又来啦,第一篇扯完淡,这一篇就谈技术吧。之前的研究集中在低频(秒级)数据,用的是各种深度学习方法,因此我就谈谈这种方法。
其实,刚读研时,导师给我的是用隐马尔可夫模型方法,学了大半年,突然导师拿了一篇让我崩溃的论文《Neural NILM: Deep Neural Networks Applied to Energy Disaggregation》,这篇文章应该是深度学习用到nilm领域的鼻祖文章了(我说深度学习,不是NN),你要是问我听谁说的,我记得是在谷歌的nilm讨论组 https://groups.google.com/forum/#!forum/energy-disaggregation ,你翻一下,Kelly(这篇文章的作者,也是nilmtk(后面会讲)的作者,也是UK-dale数据集的作者,现在不做nilm了,好像去deepmind了!)有个帖子大概说的是:我们试试深度学习呗,之前好像没人试,我们看看效果。而让我崩溃的是,看了大半年的fhmm(hmm的变种)方法,在这篇文章里被深度学习吊打。那还有什么可说的,学深度学习呗。
学…… 深度学习学着学着,发现比fhmm好太正常了。虽然nilm领域没这样提过,但是按目前的理解,nilm负荷分解任务就是语音识别中的鸡尾酒会问题,鸡尾酒会问题大概就是(我瞎编,不对的话你百度吧)一个派对上你能听到一堆人乱哄哄的说话,这是输入(在nilm中就是总电表的有功功率(假设只以电表有功作为特征)),而你要做的就是听出来每个人说的是啥(输出,分离出每个人说的啥话),在nilm任务中就是分离出每个电器的功率消耗,你说像不像!一毛一样。
看鸡尾酒会问题的举例,如下图,你走在路上听见啥声都有,你要分离出每种声音(警笛,人声,狗叫什么的)。
:
深度学习在非侵入式电力负荷监测(NILM)的应用探讨

本文介绍了非侵入式电力负荷监测(NILM)的技术,特别是深度学习方法在该领域的应用。作者讨论了深度学习如何在NILM中类似于语音识别的鸡尾酒会问题,并列举了几篇重要的深度学习相关论文,包括《Neural NILM》等。此外,还提到了一些关键数据集,如REDD和UK-DALE,以及工具包NILMTK。
最低0.47元/天 解锁文章
1万+





