论文阅读28 | SFANet: A Spectrum-aware Feature Augmentation Network for Visible-Infrared Person ReID

论文:SFANet: A Spectrum-aware Feature Augmentation Network for Visible-Infrared Person Re-Identification(一个用于跨模态行人重识别的频谱感知特征增强网络)

1.创新点

中规中矩,拼拼凑凑的典型。本文的创新点在于拼凑了,将RGB图生成的灰度图和IR图一起训练,减小模态之间的差异也保留了原始RGB图的结构信息;计算ID损失的时候,将单FC层前新加了一个FC层和BN层,可以增加ID损失的效率;在ranking loss中设计了三种双向损失比较全面,跨模态损失,模态内损失,模态间损失。

2.网络框架

首先利用逐元素通道累加的方法,将给定RGB图像点对点转换为灰度图像,并通过简单的复制操作,将单通道图像扩展到三通道灰度图。将灰度图和IR图经过一个双流网络提取特征,池化后得到特征向量。一方面,特征向量经过双线性的FC层计算ID损失;另一方面,
在这里插入图片描述
(1)生成灰度光谱图像

给定一个RGB图像,对RGB图像的每个元素的三个通道进行累加,将得到的每个数值依次放到灰度图像中对应的像素位置上。每个像素的计算公式如下,α、β和δ的值分别为0.299、0.587和0.114。最后,通过简单的复制操作,将单通道图像扩展到三通道灰度图。生成的图像和IR图像风格相像而且保留了RGB图像的一些结构信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值