1. 全局特征
全局特征是指,对每一张行人图片的全局信息进行一个特征提取,所以这个全局特征没有任何的空间信息。
缺陷:噪声区域会对全局特征造成极大的干扰;姿态的不对齐也会使得全局特征无法匹配。
2. 局部特征
局部特征是指对图像中的某个区域进行特征提取,最后将多个局部特征融合起来作为最终特征。方式:切片(一般水平切分)、利用姿态信息、利用分割信息(例如把人分割出来)、网格。
2.1 一些概念
姿态:通常一个行人会定义14个姿态点;两个相邻的姿态点相连形成骨架;常用的姿态点估计模型(Hourglass、OpenPose等)
Part和Attention:Part是指通过一定规则(例如姿态点信息)手工设置的一些矩形区域;Attention是指网络自动学习出的比较重要的任意形状区域。
水平池化:将feature maps进行水平等分,然后再池化得到分块的局部特征。
网格特征:将HXWXC尺寸的feature map中每个像素的C维特征作为一个网格特征,最终共有HXW个网格特征向量,每个向量的维度为通道数C。
2.2 水平切块
代表算法:Gate Siamese、AlignedReID、PCB、ICNN、SCPNet
总结:将图像进行水平方向的等分,每一个水平切块通过水平池化提取一个特征;Gate Siamese和AlignedReID通过设计规则(例如LSTM网络、动态对齐等ÿ