第十章 降维与度量学习(10.1-10.3)

第十章 降维与度量学习

k近邻(k-Nearest Neighbor)学习


  • 工作机制

给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后根据这k个“邻居”的信息来进行预测。
这里写图片描述
  • 最近邻分类器
    最近邻分类器(1NN,即k=1)出错的概率为:
    这里写图片描述
    其中,x为测试样本,其最近邻样本为z。通过推导可得结论:
    最近邻分类器虽然简单,但它的泛化错误率不超过贝叶斯最优分类器的错误率的两倍。

低维嵌入

  • 维度灾难
    在高维情形下出现的数据样本稀疏,距离计算困难等问题,是所有机器学习方法共同面临的严重障碍。

缓解维数灾难的一个重要途径是降维,亦称“维数约简”。通过某种数字变换将原始高维属性空间转变为一个“子空间”,在这个子空间中样本密度大幅提高,距离计算也变得更容易。
这里写图片描述

  • MDS算法
    多维缩放(MDS)是一种经典的降维算法。
    假定m个样本在原始空间的距离矩阵 DRm×m ,其第i行j列的元素 distij 为样本 xi xj 的距离。我们的目标是获得样本在 dt 维空间的表示 ZRdt×m,dd ,且任意两个样本在 d 维空间中的欧氏距离等于原始空间中的距离。
    这里写图片描述

主成分分析

主成分分析(PCA)是最常用的一种降维方法。对于一个能够将所有样本进行恰当表达的超平面,基于其最近重构性(样本点到这个超平面的距离都足够近)主成分分析的优化目标为
这里写图片描述
基于其最大可分性(样本点在这个超平面上的投影能尽可能分开)主成分分析的优化目标为:
这里写图片描述
对上述两个式子使用拉格朗日乘子法得:
这里写图片描述
于是,只需对协方差矩阵 XXT 进行特征值分解,将求得的特征值排序: λ1λ2...λd ,再取前 d 个特征值对应的特征向量构成 W=(ω1,ω2,...,ωd) ,这就是主成分分析的解。
这里写图片描述
PCA仅需保留 W 与样本的均值向量即可通过简单的向量减法和矩阵-向量乘法将新样本投影至低维空间中。

降维导致的结果

对应于最小的 dd 个特征值的特征向量被舍弃了。但这种舍弃往往是必要的:
- 舍弃这部分信息之后能使样本的采样密度增大
- 当数据收到噪声影响时,最小的特征值所对应的特征向量往往与噪声有关,将它们舍弃能在一定程度上起到去噪的效果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值