采样-Gibbs采样

MCMC蒙特卡洛马尔科夫链采样,非常重要的采样算法,而Gibbs算法也是MCMC种的一种,主要用于高维分布的采样。介绍MCMC的书籍有很多,https://victorfang.wordpress.com/2014/04/29/mcmc-the-gibbs-sampler-simple-example-w-matlab-code/这是有关Gibbs采样matlab的一个实现,里面也介绍了gibbs采样的优缺点,缺点就是你得有高维分布它的条件分布的通项,如果它的条件分布不太好采样的话,可以使用拒绝采样来sample.Gibbs采样的算法我就不给了,因为网上有好多。

本文主要是在python上实现Gibbs采样,我们设定的是二维标准高斯分布的采样,其条件分布如下:

我画的图是动态图,代码如下:


 
 
  1. import matplotlib.pyplot as plt
  2. from scipy import stats
  3. import numpy as np
  4. #为了方便操作,我们定义如下参数:
  5. #建立个字典吧
  6. #下面给的是标准正太分布,你可以修改参数
  7. u1= 0
  8. u2= 0
  9. sigma_11= 1
  10. sigma_12= 0
  11. sigma_21= 0
  12. sigma_22= 1
  13. sample=[]
  14. u=np.array([u1,u2],dtype=np.float32)
  15. sigma=np.array([[sigma_11,sigma_12],[sigma_21,sigma_22]],dtype=np.float32)
  16. def x1_given_x2(x2):
  17. u_cond=u1+sigma_12/sigma_22*(x2-u2)
  18. sigma_cond=sigma_11-sigma_12/sigma_22*sigma_21
  19. return stats.norm.rvs(loc=u_cond,scale=sigma_cond,size= 1)
  20. def x2_given_x1(x1):
  21. u_cond = u2 + sigma_12 / sigma_11 * (x1 - u1)
  22. sigma_cond = sigma_22 - sigma_12 / sigma_11 * sigma_12
  23. return stats.norm.rvs(loc=u_cond, scale=sigma_cond, size= 1)
  24. def Gibbs_Sampling(initial,size):
  25. sample.append(initial)
  26. for i in range(size):
  27. if i% 2== 0:
  28. x1=x1_given_x2(sample[ -1][ 1])
  29. sample.append([x1,sample[ -1][ 1]])
  30. continue
  31. else:
  32. x2=x2_given_x1(sample[ -1][ 0])
  33. sample.append([sample[ -1][ 0],x2])
  34. return sample
  35. #初始样本点,我是自己定义的,你可以随机初始化
  36. initial=np.array([ 5, 8],dtype=np.float32)
  37. b=Gibbs_Sampling(initial, 151)
  38. b=np.array(b)
  39. for i in range(len(b)):
  40. plt.cla()
  41. plt.plot(b[ 0:i+ 1, 0],b[ 0:i+ 1, 1])
  42. plt.pause( 0.03) #停顿时间,你可以调整
  43. fig2=plt.figure()
  44. ax=fig2.gca()
  45. ax.scatter(b[:, 0],b[:, 1])
  46. plt.show()

采样过程的图片如下:

 

采样结束后得到的样本如下:

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值