MCMC蒙特卡洛马尔科夫链采样,非常重要的采样算法,而Gibbs算法也是MCMC种的一种,主要用于高维分布的采样。介绍MCMC的书籍有很多,https://victorfang.wordpress.com/2014/04/29/mcmc-the-gibbs-sampler-simple-example-w-matlab-code/这是有关Gibbs采样matlab的一个实现,里面也介绍了gibbs采样的优缺点,缺点就是你得有高维分布它的条件分布的通项,如果它的条件分布不太好采样的话,可以使用拒绝采样来sample.Gibbs采样的算法我就不给了,因为网上有好多。
本文主要是在python上实现Gibbs采样,我们设定的是二维标准高斯分布的采样,其条件分布如下:
我画的图是动态图,代码如下:
-
import matplotlib.pyplot
as plt
-
from scipy
import stats
-
import numpy
as np
-
#为了方便操作,我们定义如下参数:
-
#建立个字典吧
-
#下面给的是标准正太分布,你可以修改参数
-
u1=
0
-
u2=
0
-
sigma_11=
1
-
sigma_12=
0
-
sigma_21=
0
-
sigma_22=
1
-
sample=[]
-
u=np.array([u1,u2],dtype=np.float32)
-
sigma=np.array([[sigma_11,sigma_12],[sigma_21,sigma_22]],dtype=np.float32)
-
def x1_given_x2(x2):
-
u_cond=u1+sigma_12/sigma_22*(x2-u2)
-
sigma_cond=sigma_11-sigma_12/sigma_22*sigma_21
-
return stats.norm.rvs(loc=u_cond,scale=sigma_cond,size=
1)
-
def x2_given_x1(x1):
-
u_cond = u2 + sigma_12 / sigma_11 * (x1 - u1)
-
sigma_cond = sigma_22 - sigma_12 / sigma_11 * sigma_12
-
return stats.norm.rvs(loc=u_cond, scale=sigma_cond, size=
1)
-
-
def Gibbs_Sampling(initial,size):
-
sample.append(initial)
-
for i
in range(size):
-
if i%
2==
0:
-
x1=x1_given_x2(sample[
-1][
1])
-
sample.append([x1,sample[
-1][
1]])
-
continue
-
else:
-
x2=x2_given_x1(sample[
-1][
0])
-
sample.append([sample[
-1][
0],x2])
-
return sample
-
#初始样本点,我是自己定义的,你可以随机初始化
-
initial=np.array([
5,
8],dtype=np.float32)
-
-
b=Gibbs_Sampling(initial,
151)
-
b=np.array(b)
-
for i
in range(len(b)):
-
plt.cla()
-
plt.plot(b[
0:i+
1,
0],b[
0:i+
1,
1])
-
plt.pause(
0.03)
#停顿时间,你可以调整
-
fig2=plt.figure()
-
ax=fig2.gca()
-
ax.scatter(b[:,
0],b[:,
1])
-
plt.show()
-
-
-
-
-
采样过程的图片如下:
采样结束后得到的样本如下: