算法工程师面试题——深度学习面试题实例必背汇总(三)

1. 介绍一下卷积神经网络(CNN)的基本结构和工作原理。

卷积神经网络(CNN)是一种深度学习模型,广泛用于图像处理、视频分析和自然语言处理等领域。其基本结构和工作原理可以概述如下:

  1. 卷积层(Convolutional Layer)

    • 这是CNN的核心层,负责提取输入数据(如图像)中的特征。
    • 它通过一系列可学习的滤波器(或称为核)扫描输入数据。
    • 每个滤波器在空间上(宽度和高度)较小,但是会覆盖输入数据的全部深度。
    • 当滤波器在输入数据上滑动时,它计算滤波器与其覆盖的小区域之间的点积,并产生一个二维激活图(feature map),表明该特征在输入中的位置。
  2. 激活层(Activation Layer)

    • 通常在卷积层之后添加激活层,用于引入非线性。
    • 最常用的激活函数是ReLU(Rectified Linear Unit),它将所有负值置为零,允许模型学习复杂的模式。
  3. 池化层(Pooling Layer)

    • 池化层用于减少特征图的空间尺寸(宽度和高度),从而减少参数的数量和计算量,同时也控制过拟合。
    • 最常见的池化操作是最大池化,它将输入的特征图划分为不同的区域,并输出每个区域的最大值。
  4. 全连接层(Fully Connected Layer)

    • 在一系列卷积和池化层之后,使用全连接层来输出最终的预测结果。
    • 这些层的神经元与前一层的所有激活连接。
    • 在进行分类任务时,最后一个全连接层的输出维度通常与类别数相对应。
  5. 反向传播和优化

    • 使用反向传播算法根据预测误差调整网络中的权重。
    • 优化器(如SGD、Adam等)负责在训练过程中更新网络的权重,以最小化损失函数。

CNN的工作原理是通过这些层逐步提取和变换输入数据的特征,从而使网络能够对输入数据进行分类或其他任务。每一层都会抽取越来越复杂的特征,从而使网络能够理解从基本边缘和纹理到复杂的对象和场景的整个范围。

2. 解释一下什么是深度学习在计算机视觉中的应用。

深度学习在计算机视觉中的应用是一个非常广泛和快速发展的领域,涉及到使用深度神经网络来处理和解释视觉信息。以下是一些关键方面:

  1. 图像识别与分类

    • 这是最基本的应用之一,涉及识别和分类图像中的对象。
    • 使用深度学习模型(如卷积神经网络,CNN)来训练大量标注图像,从而能够识别新图像中的对象。
  2. 对象检测

    • 对象检测不仅识别图像中的对象,还确定它们的位置和大小(通常是通过边界框表示)。
    • 模型如R-CNN(区域卷积神经网络)和YOLO(You Only Look Once)在这一领域广泛应用。
  3. 图像分割

    • 图像分割旨在将图像划分为多个区域,通常用于理解图像中的每个像素属于哪个对象或类别。
    • 深度学习方法,如U-Net,广泛用于医学图像分析和自动驾驶车辆中。
  4. 面部识别与生物识别

    • 使用深度学习进行面部识别已成为安全和监控系统的核心技术。
    • 此外,其他生物特征(如指纹、虹膜)的识别也越来越依赖深度学习技术。
  5. 姿态估计

    • 在体育分析、游戏、增强现实等领域,姿态估计用于确定人体各部位的位置和运动。
  6. 图像生成与风格转换

    • 深度学习模型(如生成对抗网络,GANs)能创造出逼真的图像,甚至能将一种风格的图像转换成另一种风格(例如将照片转换成梵高画风)。
  7. 视频分析

    • 在视频内容分析中,深度学习用于对象跟踪、活动识别和场景理解。
  8. 自动驾驶车辆

    • 在自动驾驶技术中,深度学习用于理解和解释周围环境,如识别道路标志、行人、车辆和驾驶环境。

深度学习改变了计算机视觉的面貌,提供了先前不可能实现的精度和复杂性。这些技术的进步正推动着从医疗诊断到自动驾驶车辆的各种应用的发展。

1. 如何处理过拟合问题?

过拟合是机器学习和深度学习中常见的问题,指的是模型对训练数据学得太好,以至于损失了对新数据的泛化能力。换句话说,模型在训练数据上表现出色,但在未见过的测试数据上表现不佳。处理过拟合问题通常包括以下几种策略:

  1. 增加数据集大小

    • 使用更多的训练数据可以提高模型的泛化能力。
    • 例如,在图像分类任务中,可以通过数据增强(如旋转、缩放、裁剪图像)来人工增加数据集的大小。
  2. 减少模型复杂度

    • 过于复杂的模型容易导致过拟合。
    • 可以通过减少网络层的数量或每层的神经元数量来简化模型。
    • 例如,在一个深度神经网络中,减少隐藏层的数量或每层的节点数可以降低模型复杂度。
  3. 正则化

    • 正则化是限制模型复杂度的一种方法,常见的有L1和L2正则化。
    • L1正则化倾向于生成稀疏权重矩阵,而L2正则化倾向于生成小且分散的权重。
    • 在线性回归模型中,添加L2正则化(岭回归)可以防止模型权重变得过大,从而避免过拟合。
  4. 使用Dropout

    • Dropout是一种在深度学习中常用的正则化技术。
    • 它在训练过程中随机地“丢弃”(即暂时移除)一部分神经元,防止模型过分依赖训练集中的特定特征。
    • 例如,在训练卷积神经网络时,在全连接层使用Dropout可以减少过拟合。
  5. 早停(Early Stopping)

    • 在训练过程中监控验证集的性能,当验证集的性能不再提升时停止训练。
    • 这可以防止在训练数据上过度训练模型。
    • 例如,在训练过程中,如果连续几个epoch验证集的准确率没有提升,则可以提前终止训练。
  6. 交叉验证

    • 通过交叉验证来估计模型的泛化能力。
    • 在k折交叉验证中,数据被分为k个子集,模型在k-1个子集上训练,在剩下的一个子集上验证。重复这个过程k次,每次使用不同的验证集。

通过这些方法,可以有效地减少过拟合问题,从而提高模型在未知数据上的泛化能力。

3. 介绍一下你使用过的图像数据增强技术

图像数据增强是一种常用于提高深度学习模型性能和泛化能力的技术,特别是在图像处理领域。以下是一些常用的图像数据增强技术:

  1. 水平和垂直翻转

    • 这种增强技术将图像沿水平或垂直轴翻转。
    • 适用于当图像的方向不影响图像类别时。
  2. 随机裁剪

    • 随机从原始图像中裁剪出一个区域。
    • 这有助于模型学习从部分视图识别对象。
  3. 旋转

    • 将图像旋转一个随机角度。
    • 对于不依赖特定方向的图像分类任务特别有用。
  4. 缩放

    • 改变图像的尺寸,可以是放大或缩小。
    • 这有助于模型识别不同大小的对象。
  5. 颜色变换

    • 包括调整亮度、对比度、饱和度等。
    • 这种增强方法有助于模型处理不同光照和颜色条件下的图像。
  6. 高斯噪声添加

    • 在图像中添加随机噪声。
    • 这可以使模型更健壮,更好地处理现实世界中的噪声干扰。
  7. 几何变换

    • 如透视变换和仿射变换。
    • 这有助于模型理解不同视角下的对象。
  8. 标准化和归一化

    • 调整图像的像素值,使其符合特定的范围或分布。
    • 这是预处理步骤,有助于模型训练的稳定性和效率。
  9. 随机擦除

    • 随机选择图像的一部分并将其像素置为零或替换为随机值。
    • 这种方法有助于减少模型对局部特征的依赖。
  10. 切变变换

    • 通过水平或垂直方向的切变改变图像的几何形状。
    • 这有助于模型识别在不同角度下的对象。

这些技术可以单独使用,也可以组合使用,以提高深度学习模型在处理图像时的准确性和鲁棒性。数据增强的关键是保持图像的基本内容和类别标签不变,同时提供足够的变化,以模拟在现实世界中可能遇到的不同条件。

4. R-CNN、YOLO(You Only Look Once)和SSD(Single Shot Multibox Detector)的区别

R-CNN、YOLO(You Only Look Once)和SSD(Single Shot Multibox Detector)都是流行的对象检测模型,它们在设计和性能上有显著的区别:

  1. R-CNN(Region-Based Convolutional Neural Networks)

    • 工作原理:R-CNN首先使用选择性搜索算法在图像中提取大量潜在的感兴趣区域(regions of interest, RoIs),然后对每个区域使用卷积神经网络进行特征提取,接着每个区域的特征被送入一个SVM(支持向量机)进行分类,最后使用回归方法精调边界框。
    • 优点:较好的检测精度。
    • 缺点:速度慢,因为需要对每个区域单独进行特征提取和分类,计算量大。
  2. Fast R-CNN 和 Faster R-CNN

    • 这两种模型是对R-CNN的改进。
    • Fast R-CNN 使用整个图像的共享卷积特征,而不是对每个区域单独提取特征,提高了效率。
    • Faster R-CNN 引入了区域建议网络(Region Proposal Network, RPN),进一步提高了区域提取的速度和质量。
  3. YOLO(You Only Look Once)

    • 工作原理:与R-CNN系列不同,YOLO将对象检测作为一个单一的回归问题来解决,直接在图像上预测边界框和类别概率。
    • 优点:速度快,因为它在整个图像上只运行一次深度CNN,实现了实时检测。
    • 缺点:在处理小对象和群体场景时的准确性不如R-CNN系列。
  4. SSD(Single Shot Multibox Detector)

    • 工作原理:SSD在多个尺度的特征图上直接预测边界框的偏移和类别概率,结合了YOLO的速度和Faster R-CNN的准确性。
    • 优点:在速度和准确性之间提供了很好的平衡,特别是在处理不同尺寸对象时。
    • 缺点:在非常小的对象检测方面可能仍然不如Faster R-CNN精确。

总结:

  • R-CNN 系列在精确性上表现优秀,但速度较慢。
  • YOLO 在速度上占优势,适合实时检测任务,但在精确性上可能略逊一筹。
  • SSD 试图在速度和精确性之间取得平衡,特别是在多尺度对象检测方面表现良好。

5. 多尺度对象检测?

多尺度对象检测是指在图像中检测不同大小(尺度)的对象。这是计算机视觉中的一个挑战,因为同一对象在不同距离和角度下可能会出现在不同的尺寸。例如,在街景图像中,远处的行人看起来比近处的行人小。为了有效地检测这些不同尺度的对象,对象检测模型需要能够理解和识别不同大小的对象。

在多尺度对象检测中,主要的挑战是:

  1. 尺度不变性:模型需要能够识别无论大小如何都具有相同类别的对象。例如,无论汽车是远处的小汽车还是近处的大汽车,模型都应该能夠准确识别它。

  2. 细节保留:在处理较小的对象时,模型需要能够从有限的像素中提取足够的信息进行准确的检测。

为了解决这些挑战,多尺度对象检测技术通常包括:

  • 使用多尺度特征图:一些先进的检测模型,如SSD(Single Shot Multibox Detector)和Faster R-CNN,使用不同层次的特征图来检测不同大小的对象。这些特征图在网络的不同阶段捕捉到不同尺寸的特征,允许模型同时关注小对象的细节和大对象的整体结构。

  • 图像金字塔:传统的多尺度检测方法中,会使用图像金字塔,即创建同一图像的多个尺度(缩放版本),然后在每个尺度上独立运行检测算法。

  • 动态尺度调整:一些方法可能会动态调整网络的结构或参数,使其更适合于当前图像中对象的尺度。

多尺度对象检测对于实际应用至关重要,因为它使得模型能够在各种实际场景中更准确地识别对象,无论这些对象的大小如何。

6. 你是如何选择合适的神经网络架构的?

选择合适的神经网络架构是一个复杂的决策过程,涉及对问题的理解、数据的特性以及计算资源的考虑。以下是选择神经网络架构时需要考虑的关键因素:

  1. 问题的性质

    • 对于不同类型的问题(如分类、回归、序列预测、对象检测等),需要不同类型的神经网络架构。
    • 例如,对于图像分类,卷积神经网络(CNN)是一个好的选择;对于时间序列数据或自然语言处理,循环神经网络(RNN)或变压器(Transformer)可能更合适。
  2. 数据的大小和质量

    • 数据量大且多样化的情况下,可以选择更复杂的模型,如深度CNN或大型变压器模型。
    • 数据量小或质量不高时,可能需要更简单的模型或应用技术如数据增强,以避免过拟合。
  3. 计算资源和推理时间

    • 如果计算资源有限,或需要快速推理(如移动设备或实时应用),应选择较小、效率更高的模型。
    • 在计算资源充足的情况下,可以考虑更大、更复杂的模型,以实现更高的准确性。
  4. 已有的研究和预训练模型

    • 通常,基于已有的研究成果和可用的预训练模型来选择网络架构是一种高效的方法。
    • 例如,在图像识别领域,可以使用预训练的ResNet、VGG或Inception模型作为起点。
  5. 模型的可解释性

    • 在某些应用中,如医疗诊断,模型的可解释性可能很重要。
    • 选择或修改架构以提高其决策过程的透明度和可解释性。
  6. 实验和验证

    • 选择神经网络架构通常需要进行实验和验证。
    • 根据初始实验结果对模型进行调整,例如通过增加或减少层数、改变层的类型或调整超参数。
  7. 任务的特殊要求

    • 考虑任务的特殊要求,如对模型大小、推理速度或能耗的限制。

在实践中,选择合适的架构通常是一个迭代的过程,涉及实验、调整和优化。此外,随着技术的发展,新的神经网络架构和技术不断出现,因此保持对最新研究的关注也是非常重要的。

7. 讲述一下反向传播算法的基本原理

反向传播算法是神经网络中最关键的训练机制之一,用于有效地计算网络中每个权重对总损失函数的影响,从而调整权重以最小化损失。其基本原理可以分为以下几个步骤:

  1. 前向传播

    • 在前向传播过程中,输入数据通过神经网络的每一层传递,直至输出层。
    • 在每一层,输入数据与权重相乘并加上偏置,然后通过激活函数以产生该层的输出。
    • 最终,输出层生成网络的预测结果。
  2. 计算损失

    • 网络的预测输出与真实值(标签)之间的差异通过损失函数(如均方误差、交叉熵等)来计算。
    • 损失函数的选择取决于具体的任务(如分类、回归等)。
  3. 反向传播

    • 反向传播的过程从输出层开始,反向穿过网络,直到输入层。
    • 在这个过程中,计算损失函数对每个权重的偏导数,即求解损失函数对每个权重的梯度。
    • 这些梯度表明了权重需要调整的方向和幅度,以便减少总损失。
  4. 梯度下降(或其他优化算法)

    • 使用计算得到的梯度,通过梯度下降或其他优化算法来更新网络的权重。
    • 权重的更新可以看作是在误差梯度的方向上“下降”,以减少损失函数的值。
  5. 链式法则

    • 反向传播算法使用链式法则来高效计算梯度。
    • 链式法则允许我们将复合函数的导数分解为各个简单函数的导数的乘积,从而简化了梯度的计算过程。
  6. 迭代更新

    • 这个过程在每个训练批次中重复进行,每次迭代都会更新权重,逐渐减少预测误差。
    • 经过多次迭代后,模型的权重被调整为可以使损失函数达到最小的值。

总的来说,反向传播算法是一种高效的方法,通过在神经网络的所有层中计算并传播误差,来更新和优化模型的权重。这种方法使得深度神经网络能够学习复杂的、非线性的任务,如图像识别、语音识别和自然语言处理等。

8. 自注意力机制的特点、原理和结构

自注意力机制(Self-Attention),也常被称为内部注意力(Intra-Attention),是一种在深度学习特别是自然语言处理(NLP)领域中广泛使用的技术。它是注意力机制的一种特殊形式,能够使模型在处理一个序列时关注序列内部的不同部分。自注意力在Transformer架构中起到了核心作用,后者是当前许多高级NLP模型的基础。

特点

  1. 长距离依赖处理

    • 自注意力能有效捕捉长距离依赖关系,即使在序列很长时也能保持其效能。
  2. 并行化处理

    • 与循环神经网络(RNN)相比,自注意力机制允许对整个输入序列进行并行处理,显著提高了计算效率。
  3. 灵活性

    • 它可以轻松地集成到各种模型架构中,用于增强模型对序列内部结构的理解。

原理

自注意力机制的核心是计算序列中每个元素对其他所有元素的注意力得分,然后基于这些得分来生成序列的加权表示。其基本步骤包括:

  1. 查询(Query)、键(Key)和值(Value)的计算

    • 对于序列中的每个元素,模型通过不同的权重矩阵生成查询(Q)、键(K)和值(V)向量。
  2. 注意力得分计算

    • 计算序列中每个元素(作为查询)对其他所有元素(作为键)的注意力得分,通常是通过计算查询和键的点积,然后应用softmax函数来获得标准化的得分。
  3. 加权值的计算

    • 每个元素的输出是其值向量的加权和,权重由注意力得分决定。
  4. 输出组合

    • 对于序列中的每个元素,其最终的输出是所有其他元素的加权值的组合。

结构

在Transformer模型中,自注意力结构被进一步扩展和优化:

  • 多头注意力:Transformer使用了所谓的“多头”自注意力,它允许模型在不同的表示子空间中并行学习信息。

  • 层次化结构:在Transformer中,多个自注意力层堆叠在一起,允许模型学习更复杂的序列表示。

  • 结合位置编码:由于自注意力本身不涉及序列的顺序信息,Transformer通过添加位置编码来注入这种信息,使模型能够利用序列中元素的位置信息。

自注意力机制通过这些方式极大地提升了模型处理序列数据的能力,特别是在处理长序列和捕捉复杂的依赖关系方面。这使得基于自注意力的模型,如Transformer及其变体(比如BERT、GPT等),在许多NLP任务中取得了显著的成绩。

9. 为什么自注意力能有效捕捉长距离依赖关系

自注意力机制能有效捕捉长距离依赖关系的原因在于其设计和数学原理。在传统的循环神经网络(RNN)和长短期记忆网络(LSTM)中,信息必须沿着序列顺序逐步传递,这可能导致随着距离的增加,信息变得模糊或丢失(这就是所谓的梯度消失问题)。而自注意力机制通过直接计算序列中各元素之间的关系,克服了这个限制。

捕捉长距离依赖

在自注意力机制中,每个元素的输出是基于对整个输入序列的注意力权重计算的,这意味着序列中任意两个元素之间的相互作用都可以直接在一个步骤中计算出来,而不需要像RNN那样逐步传递信息。因此,即使序列很长,元素间的关系也不会随距离的增加而变得模糊或丢失,从而使模型能够有效捕捉长距离依赖关系。

此外,由于自注意力是基于整个序列计算的,它不受序列长度的限制,这与传统RNN或LSTM不同,在后者中,随着序列长度的增加,性能可能会下降。

总之,自注意力机制通过直接计算序列中各个元素之间的全局关系,有效地捕捉了长距离依赖关系,这在处理长序列和复杂的序列数据时尤为重要。

10. 如何评估一个计算机视觉模型的性能?

评估计算机视觉模型的性能通常涉及多个方面,包括定量的评估指标、模型的泛化能力、计算效率等。以下是一些常用的方法和指标:

1. 定量评估指标

  • 准确率(Accuracy)

    • 测量模型正确预测的比例。在平衡类别的数据集中尤为有效。
  • 精确度(Precision)和召回率(Recall)

    • 精确度是模型正确识别为正类的样本中实际为正类的比例,而召回率是所有正类样本中被正确识别为正类的比例。
    • 这两个指标在不平衡的数据集中特别重要。
  • F1 分数

    • 精确度和召回率的调和平均值,是一种综合考虑两者的指标。
  • 混淆矩阵(Confusion Matrix)

    • 详细展示了模型预测的正类和负类与实际类别之间的关系。
  • 接收者操作特征曲线(ROC Curve)和曲线下面积(AUC)

    • 评估分类模型在不同阈值下的性能,AUC值越高,模型的分类性能越好。

对于特定任务,如对象检测或图像分割,可能还会使用以下指标:

  • 平均精度均值(Mean Average Precision, mAP)

    • 在对象检测任务中,mAP是评估模型性能的关键指标,考虑了不同置信度阈值下的精度和召回率。
  • 交并比(Intersection over Union, IoU)

    • 用于评估图像分割模型的性能,计算预测的边界框与真实边界框的重叠程度。

2. 泛化能力

  • 在独立测试集上的性能

    • 模型在训练集之外的数据上的表现,反映了其泛化能力。
  • 交叉验证

    • 使用不同的训练和测试数据分割来评估模型,以更全面地理解其泛化能力。

3. 计算效率

  • 推理时间

    • 模型处理单个样本所需的时间,对于需要实时处理的应用尤为重要。
  • 模型大小

    • 模型参数的数量,影响模型的存储和加载速度。

4. 可解释性和健壮性

  • 可解释性

    • 模型决策过程的透明度,对于某些应用(如医疗诊断)可能非常重要。
  • 对抗样本的健壮性

    • 模型对输入扰动的敏感度,反映了其在实际应用中的可靠性。

5. 实际应用考虑

  • 在特定应用环境下的表现
    • 模型在特定实际应用场景(如不同光照条件、不同角度拍摄的图像等)下的性能。

总之,评估计算机视觉模型的性能是一个多方面的过程,需要综合考虑多个指标和实际应用的需求。

11. 解释一下非极大值抑制(NMS)的作用

非极大值抑制(Non-Maximum Suppression,NMS)是一种在计算机视觉特别是对象检测任务中常用的技术。其主要作用是从多个重叠的边界框中选出最佳的一个,从而减少重复检测的问题。在对象检测模型(如R-CNN、YOLO、SSD)中,通常会为同一个对象生成多个候选框,NMS帮助我们从这些候选框中筛选出最合适的一个。

工作原理:

NMS的工作流程通常包括以下几个步骤:

  1. 置信度排序

    • 所有检测到的边界框根据它们的置信度(即模型认为框内包含对象的概率)进行排序。
  2. 选择置信度最高的边界框

    • 选取置信度最高的边界框作为候选框,并移除其他与它重叠程度较高的边界框。
    • 重叠程度通常由交并比(Intersection over Union, IoU)来衡量,IoU是两个边界框重叠区域与它们的联合区域之比。
  3. 移除重叠框

    • 对于剩余的边界框,移除所有与当前候选框IoU超过特定阈值的框。这个阈值通常是人为设定的,用来决定何种程度的重叠被认为是不可接受的。
  4. 重复过程

    • 重复步骤2和3,直到所有的边界框都被处理完毕。

作用:

  1. 减少重复检测

    • 在对象检测中,同一个对象可能被检测多次并生成多个边界框。NMS帮助去除重复的检测,确保每个对象只被检测一次。
  2. 提高检测精度

    • 通过选取最佳的边界框,NMS提高了对象检测的准确性。
  3. 提升后处理效率

    • 减少边界框的数量,降低了后续处理步骤的计算负担。

非极大值抑制是对象检测模型后处理步骤中不可或缺的一环,对于提高模型的整体性能和效率至关重要。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
深度学习面试中,有一些常见的问题被广泛提及。以下是其中一些问题的例子: 1. 请介绍一下Batch Normalization的意义。 2. 请解释一下梯度消失和梯度爆炸问题以及它们在深度学习中的影响。 3. 请说明一下卷积神经网络(CNN)的原理和应用场景。 4. 请解释一下RNN(循环神经网络)的原理,并说明它在自然语言处理中的应用。 5. 请解释一下过拟合和欠拟合问题以及如何解决它们。 6. 请解释一下正则化在深度学习中的作用和优化方法。 7. 请解释一下损失函数(Loss Function)的作用和不同类型的损失函数。 8. 请解释一下反向传播算法(Backpropagation)的原理和作用。 9. 请解释一下卷积操作和池化操作的区别和作用。 10. 请解释一下Dropout的原理和作用。 11. 请解释一下LSTM(长短期记忆网络)的原理和优势。 12. 请解释一下生成对抗网络(GAN)的原理和应用。 这些问题旨在检验面试者对深度学习的理解和应用能力。对于面试官来说,通过候选人的回答可以评估他们的专业知识和解决问题的能力。对于求职者来说,回答这些问题可以展示他们的深度学习知识和经验。然而,具体提问方式可能会因面试者的背景和职位要求而有所不同。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [12个深度学习面试问题](https://blog.csdn.net/qq_42722197/article/details/119194547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值