以下是一份精心挑选的 30 道关于视频扩散模型(Video Diffusion Models)及其相关技术的面试题,并附有相对简明、要点突出的答案。这些问题按从基础概念到较为深入的技术细节排序,侧重真实面试中常见的考查重点与难点。希望能帮助你在面试中更好地展示对视频扩散模型及相关技术的理解和应用能力。
1. 什么是扩散模型?它与GAN相比有哪些主要不同?
答:
- 定义:扩散模型是一类概率生成模型,通过设计一个“前向加噪”与“逆向去噪”的过程来学习数据分布,从而在推断时可以从随机噪声逐步“去噪”并生成目标数据。
- 与GAN的主要区别:
- 训练稳定性:GAN 需要训练生成器与判别器的对抗过程,往往不稳定且易出现模式崩溃;扩散模型训练更稳定。
- 可控性:扩散模型在推断时可手动调节去噪强度、噪声水平等超参数,更易实现可控生成。
- 生成质量:在图像和视频等领域,扩散模型往往能生成更逼真且多样性更高的结果。