什么是 GRU(门控循环单元)?
GRU(门控循环单元,Gated Recurrent Unit)是一种特殊的循环神经网络(RNN)变体,设计目的是解决传统 RNN 在处理序列数据时遇到的梯度消失和梯度爆炸问题,同时有效地捕捉序列中的长期依赖关系。GRU 通过引入两个门控机制——更新门(Update Gate)和重置门(Reset Gate)——来控制信息的流动。与传统的 RNN 相比,GRU 的结构更简单,计算效率更高,且在许多任务中表现出色。
GRU 的结构与工作原理
GRU 的核心在于通过两个门控单元动态管理信息的保留和更新。它的基本计算过程如下:
-
更新门(Update Gate)
更新门