感觉自己的方法应该不是最优的,但是也还算清晰。若有更好的方法欢迎指出。
问题描述
数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。
提示
因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。
输入格式
输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
输出格式
输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。
样例输入
3 10 5
4 6 8
样例输出
7 9 9
//18.56-19.35
#include<iostream>
using namespace std;
struct ball{
int x;
int way;//-1:左。1:右
ball(){
way=1;
}
};
int n, L, t;//分别表示小球的个数、线段长度L和你需要计算t秒之后小球的位置。
ball a[105];//a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
int num_of_ball[10000]={0};
void move()
{
for(int i=0;i<n;i++)//对每个小球处理
{
if(num_of_ball[a[i].x]>=2)//先判重合
{
a[i].way=(-1)*a[i].way;
for(int j=0;j<n;j++)//找和他重合的另一个球。
{
if(j!=i&&a[j].x==a[i].x)
{
a[j].way=(-1)*a[j].way;
}
}
}
num_of_ball[a[i].x]--;
a[i].x+=a[i].way;//再移动
num_of_ball[a[i].x]++;
if(a[i].x==L||a[i].x==0)
{
a[i].way=(-1)*a[i].way;
}
}
}
int main()
{
//1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
cin>>n>>L>>t;
for(int i=0;i<n;i++)
{
cin>>a[i].x;
num_of_ball[a[i].x]++;//记录该坐标小球数量
}
for(int i=0;i<t;i++)//move t次
{
move();
}
for(int i=0;i<n;i++)
{
cout<<a[i].x<<" ";
}
return 0;
}