ccf 201803-2 碰撞的小球

13 篇文章 0 订阅

 

感觉自己的方法应该不是最优的,但是也还算清晰。若有更好的方法欢迎指出。

 

问题描述

  数轴上有一条长度为L(L为偶数)的线段,左端点在原点,右端点在坐标L处。有n个不计体积的小球在线段上,开始时所有的小球都处在偶数坐标上,速度方向向右,速度大小为1单位长度每秒。
  当小球到达线段的端点(左端点或右端点)的时候,会立即向相反的方向移动,速度大小仍然为原来大小。
  当两个小球撞到一起的时候,两个小球会分别向与自己原来移动的方向相反的方向,以原来的速度大小继续移动。
  现在,告诉你线段的长度L,小球数量n,以及n个小球的初始位置,请你计算t秒之后,各个小球的位置。

提示

  因为所有小球的初始位置都为偶数,而且线段的长度为偶数,可以证明,不会有三个小球同时相撞,小球到达线段端点以及小球之间的碰撞时刻均为整数。
  同时也可以证明两个小球发生碰撞的位置一定是整数(但不一定是偶数)。

输入格式

  输入的第一行包含三个整数n, L, t,用空格分隔,分别表示小球的个数、线段长度和你需要计算t秒之后小球的位置。
  第二行包含n个整数a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。

输出格式

  输出一行包含n个整数,用空格分隔,第i个整数代表初始时刻位于ai的小球,在t秒之后的位置。

样例输入

3 10 5
4 6 8

样例输出

7 9 9

//18.56-19.35

#include<iostream>

using namespace std;

struct ball{
	int x;
	int way;//-1:左。1:右 
	ball(){
		way=1;
	}
};

int n, L, t;//分别表示小球的个数、线段长度L和你需要计算t秒之后小球的位置。
ball a[105];//a1, a2, …, an,用空格分隔,表示初始时刻n个小球的位置。
int num_of_ball[10000]={0};
void move()
{
	for(int i=0;i<n;i++)//对每个小球处理 
	{
		if(num_of_ball[a[i].x]>=2)//先判重合 
		{
			a[i].way=(-1)*a[i].way;
			for(int j=0;j<n;j++)//找和他重合的另一个球。 
			{
				if(j!=i&&a[j].x==a[i].x)
				{
					a[j].way=(-1)*a[j].way;
				}
			}
		}
		num_of_ball[a[i].x]--;
		a[i].x+=a[i].way;//再移动 
		num_of_ball[a[i].x]++;
		
		if(a[i].x==L||a[i].x==0)
		{
			a[i].way=(-1)*a[i].way;
		}
		
	}
}
int main()
{
	//1 ≤ n ≤ 100,1 ≤ t ≤ 100,2 ≤ L ≤ 1000,0 < ai < L。L为偶数。
	cin>>n>>L>>t;
	for(int i=0;i<n;i++)
	{
		cin>>a[i].x;
		num_of_ball[a[i].x]++;//记录该坐标小球数量 
	}
	
	 for(int i=0;i<t;i++)//move t次 
	 {
	 	move();
	 }
	for(int i=0;i<n;i++)
	{
		cout<<a[i].x<<" ";
	}
	return 0;
	
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值