Keras中TensorBoard的使用教程

TensorBoard介绍:

TensorBoard是一个内置于TensorFlow的基于浏览器的可视化工具。当Keras使用TensorFlow后端时,可以通过callback回调函数调用TensorBoard功能。

在训练过程中,利用TB可以实现:

1.在训练过程中以可视化的方式监控指标

2.将模型架构可视化

3.将激活和梯度的直方图可视化

4.以三维的形式研究嵌入

代码例子:

import keras

callbacks_list=[
    keras.callbacks.TensorBoard(
        log_dir='C:/apple',#TensorBoard文件保存的路径
        embeddings_freq=1
)
]

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['acc'])

model.fit(x,y,
          epochs=10,
          batch_size=32,
          callbacks=callbacks_list,#在这里放入callback函数
          validation_data=(x_val,y_val)
 )

打开TensorBoard文件:

1.打开cmd命令提示符,输入tensorboard --logdir=C:\apple --host=127.0.0.1    (路径写你自己保存TensorBoard文件的路径,注意指令--前的空格)

TensorBoard文件读取成功会有下图第三行的提示

2.打开浏览器,打开网址127.0.0.1:6006就可以看到TensorBoard中显示的各种数据了,acc、loss、val_acc、val_loss等等,还能可视化非常多其他数据,这个就需要在代码中另外实现了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值