TensorBoard介绍:
TensorBoard是一个内置于TensorFlow的基于浏览器的可视化工具。当Keras使用TensorFlow后端时,可以通过callback回调函数调用TensorBoard功能。
在训练过程中,利用TB可以实现:
1.在训练过程中以可视化的方式监控指标
2.将模型架构可视化
3.将激活和梯度的直方图可视化
4.以三维的形式研究嵌入
代码例子:
import keras
callbacks_list=[
keras.callbacks.TensorBoard(
log_dir='C:/apple',#TensorBoard文件保存的路径
embeddings_freq=1
)
]
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
model.fit(x,y,
epochs=10,
batch_size=32,
callbacks=callbacks_list,#在这里放入callback函数
validation_data=(x_val,y_val)
)
打开TensorBoard文件:
1.打开cmd命令提示符,输入tensorboard --logdir=C:\apple --host=127.0.0.1 (路径写你自己保存TensorBoard文件的路径,注意指令--前的空格)
TensorBoard文件读取成功会有下图第三行的提示
2.打开浏览器,打开网址127.0.0.1:6006就可以看到TensorBoard中显示的各种数据了,acc、loss、val_acc、val_loss等等,还能可视化非常多其他数据,这个就需要在代码中另外实现了