DeepSeek+CherryStudio本地部署/知识库/API秘钥

1. 下载并安装Ollama

官网Ollama

下载地址:Download Ollama on Windows

建议使用下载加速工具,极大提高下载速度

运行下载后的安装包

1.1 1点击“Install”开始安装

1.2 验证是否安装成功

我们也可以通过windows命令窗口查看是否安装成功

打开命令窗口的方法:

在运行中输入 cmd

然后输入:ollama ,显示有很多可选命令表示安装成功了

1.3下载 deepseek-r1模型

下载地址:deepseek-r1:1.5b
Ollama默认要求安装在C盘不可以修改
但是:模型下载位置是可以修改的
下载模型前,可以设置模型存储位置

1.3.1 修改模型默认存放位置

在此电脑鼠标右键,点击属性

1.3.2 选中下拉选项,然后点击复制下载命令

1.3.3 打开电脑命令窗口然后粘贴命令到窗口,回车

打开命令窗口的方法:

在运行中输入 cmd

输入:ollama run deepseek-r1:1.5b

下载完成模型后,可以直接在命令窗口进行提问

模型默认下载存放位置在

C:\Users\xxxx\AppData\Roaming\anythingllm-desktop\storage\models\ollama\blobs

退出命令是  ctrl+d或者输入斜杠+bye 也可以直接关闭窗口

1.3.4 卸载模型方法

如果你安装了多个模型,需要卸载某个模型,方法如下:

打开命令窗口,输入  ollama rm xxxxxx (xxxxx是模型全称)

二、CherryStudio + Ollama

1.下载Cherry Studio

下载地址:Cherry Studio 官方网站 - 全能的AI助手

官网下载比较慢推荐地址:https://download.csdn.net/download/qq_38382365/90539378

1.2 安装

选择好安装目录 一直下一步安装就好

1.3 配置

2.3.1配置硅基流动:

注册地址:硅基流动用户系统,统一登录 SSO

注册登录后,点击左侧API密钥

点击“新建API密钥”,创建好后点击复制密钥

在cherryStudio点击设置,在硅基流动右侧点击“检查”

2.3.2配置本地部署的DeepSeek

在设置->模型服务

点击“Ollama”,点击“管理”

点击本地添加的模型后面“+”

设置默认模型

回到聊天页面进行聊天

即可实现本地DeepSeek模型对话

2.3.3本地知识库

3.3.1添加知识库之前,请先去把模型设置为嵌入模型

3.3.2创建知识库

3.3.3选择本地文件或者目录,添加网络文章地址

3.3.4使用知识库

在聊天时记住一定要选择你的知识库,选择了知识库的会是彩色的按钮

### 本地部署 Ollama 和 CherryStudioDeepSeek 模型并调用 API #### 部署概述 为了在本地环境中成功部署 Ollama 并集成 DeepSeek 模型,同时利用 CherryStudio 实现用户交互界面并通过其 API 接口完成模型调用,需遵循一系列配置流程。以下是详细的说明。 --- #### 基础环境准备 首先,在服务器上构建适合运行大型语言模型的基础环境。这一步骤涉及安装必要的依赖项和工具链,确保硬件资源满足需求[^1]。具体操作如下: - **操作系统支持**: Linux 或 macOS 是推荐的选择。 - **GPU 支持 (可选)**: 如果计划加速推理过程,则需要 NVIDIA GPU 及 CUDA 工具包的支持。 - **内存与存储空间**: 至少分配 8GB RAM 来加载较小版本的 DeepSeek 模型(如 `deepseek-r1:7b`),而更大规模变体可能要求更多资源。 --- #### 安装 Ollama Ollama 提供了一个简洁易用的框架来管理多种预训练模型,包括来自 DeepSeek 的系列成员。按照官方文档指示执行以下命令可以快速启动服务[^3]: ```bash brew install ollama # 对于 Mac 用户而言适用此方法获取最新二进制文件; curl https://ollama.ai/install.sh | sh # 替代方案适用于其他平台类型。 ``` 随后验证安装成果: ```bash ollama version # 查看已安裝之 Ollama 版本号。 ``` 接着下载目标模型实例之一——这里选取的是较轻量级选项 `deepseek-r1:7b` : ```bash ollama pull deepseek/r1:7b ``` 确认模型可用状态可通过浏览器访问默认监听端口上的网页界面 (`http://localhost:11434`) ,或者借助 RESTful 请求查询现有模型列表信息: ```json GET http://localhost:11434/v1/models ``` 上述返回 JSON 数据结构应包含刚拉取成功的条目名称及其元属性描述等内容。 --- #### 设置 CherryStudio 作为图形化前端解决方案的一部分,CherryStudio 能够显著简化最终使用者同后端 LLMs 进行沟通的过程。依照指引步骤完成软件本身的获取之后,还需调整若干参数使之适配先前建立起来的服务架构: 1. 下载并安装 CherryStudio 应用程序至个人计算设备之上。 2. 登录进入应用内部设定区域找到关于自定义远程连接的部分。 3. 将原本指向云端服务商的标准 URL 地址替换为我们刚才搭建完毕后的私有网络位置字符串形式表达(`http://<your_server_ip>:11434`)。 4. 添加期望使用的特定型号标签名到指定字段里去匹配实际存在的实体对象。 完成后即可尝试发起简单的测试会话以检验整个链条是否正常运作无误。 --- #### 利用 API 进行高级控制 除了直观的操作方式之外,开发者还可以充分利用暴露出来的 HTTP endpoints 编写脚本来自动化某些任务逻辑或是嵌入第三方应用程序当中形成更加丰富的用户体验效果。下面给出一段 Python 示例代码片段展示如何发送 POST 请求给定输入文本从而获得相应输出结果: ```python import requests url = 'http://localhost:11434/v1/completions' payload = { "model": "deepseek-r1", "prompt": "Explain quantum computing.", } response = requests.post(url, json=payload) if response.status_code == 200: print(response.json()['choices'][0]['text']) else: print(f'Error {response.status_code}: {response.text}') ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sternschnapper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值