Beta分布

Beta函数

Beta函数的定义如下 B ( a , b ) = ∫ 0 1 x a − 1 ( 1 − x ) b − 1 d x , \mathrm{B}(a,b)=\int_0^1 x^{a-1}(1-x)^{b-1}dx, B(a,b)=01xa1(1x)b1dx,其中参数 a > 0 a>0 a>0 b > 0 b>0 b>0。Beta函数具有如下性质:
(1) B ( a , b ) = B ( b , a ) \mathrm{B}(a,b)=\mathrm{B}(b,a) B(a,b)=B(b,a)
证明:令 y = 1 − x y=1-x y=1x,则有 B ( a , b ) = ∫ 1 0 ( 1 − y ) a − 1 y b − 1 ( − d y ) = ∫ 0 1 ( 1 − y ) a − 1 y b − 1 d y = B ( b , a ) \mathrm{B}(a,b)=\int^0_1 (1-y)^{a-1}y^{b-1}(-dy)=\int^1_0 (1-y)^{a-1}y^{b-1}dy=\mathrm{B}(b,a) B(a,b)=10(1y)a1yb1(dy)=01(1y)a1yb1dy=B(b,a)(2)Beta函数与Gamma函数之间的关系 B ( a , b ) = Γ ( a ) Γ ( b ) Γ ( a + b ) \mathrm{B}(a,b)=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} B(a,b)=Γ(a+b)Γ(a)Γ(b)证明:由Gamma函数的定义可知 Γ ( a ) Γ ( b ) = ∫ 0 ∞ ∫ 0 ∞ x a − 1 y b − 1 e − ( x + y ) d x d y , \Gamma(a)\Gamma(b)=\int^{\infty}_{0}\int^{\infty}_{0}x^{a-1}y^{b-1}e^{-(x+y)}dxdy, Γ(a)Γ(b)=00xa1yb1e(x+y)dxdy,作变量变换 x = u v x=uv x=uv y = u ( 1 − v ) y=u(1-v) y=u(1v),其雅可比行列式 J = − u J=-u J=u。故 Γ ( a ) Γ ( b ) = ∫ 0 ∞ ∫ 0 1 ( u v ) a − 1 [ u ( 1 − v ) ] b − 1 e − u u d u d v = ∫ 0 ∞ u a + b − 1 e − u d u ∫ 0 1 v a − 1 ( 1 − v ) b − 1 d v = Γ ( a + b ) B ( a , b ) \begin{aligned}\Gamma(a)\Gamma(b)&=\int^{\infty}_0\int_0^1(uv)^{a-1}[u(1-v)]^{b-1}e^{-u}ududv\\&=\int^{\infty}_0u^{a+b-1}e^{-u}du\int^{1}_0 v^{a-1}(1-v)^{b-1}dv\\&=\Gamma(a+b)\mathrm{B}(a,b)\end{aligned} Γ(a)Γ(b)=001(uv)a1[u(1v)]b1euududv=0ua+b1eudu01va1(1v)b1dv=Γ(a+b)B(a,b)证毕。

Beta分布

若随机变量 X X X的密度函数为 p ( x ) = { Γ ( a + b ) Γ ( a ) Γ ( b ) x a − 1 ( 1 − x ) b − 1 , 0 < x < 1 , 0 , 其 他 , p(x)=\left\{\begin{array}{ll}\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}x^{a-1}(1-x)^{b-1},&0<x<1,\\0,&其他,\end{array}\right. p(x)={Γ(a)Γ(b)Γ(a+b)xa1(1x)b1,0,0<x<1,则称 X X X服从Beta分布,记作 X ∼ B e t a ( a , b ) X \sim Beta(a,b) XBeta(a,b),其中 a > 0 a>0 a>0 b > 0 b>0 b>0都是形状参数。
 因为服从Beta分布 B e t a ( a , b ) Beta(a,b) Beta(a,b)的随机变量是仅在区间 ( 0 , 1 ) (0,1) (0,1)取值的,所以不合格率,机器的维修率,市场占有率,射击的命中率等各种比率选用Beta分布作为它们的概率分布是恰当的,只要选择合适的参数 a a a b b b即可。

Beta分布 B e t a ( a , b ) Beta(a,b) Beta(a,b)的数学期望和方差

利用Beta函数的性质,不难算得Beta分布 B e t a ( a , b ) Beta(a,b) Beta(a,b)的数学期望为 E ( X ) = Γ ( a + b ) Γ ( a ) Γ ( b ) ∫ 0 1 x a ( 1 − x ) b − 1 d x = Γ ( a + b ) Γ ( a ) Γ ( b ) ⋅ Γ ( a + 1 ) Γ ( b ) Γ ( a + b + 1 ) = a a + b \begin{aligned}\mathbb{E}(X)&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\int^1_0 x^a(1-x)^{b-1}dx\\&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\cdot\frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)}\\&=\frac{a}{a+b}\end{aligned} E(X)=Γ(a)Γ(b)Γ(a+b)01xa(1x)b1dx=Γ(a)Γ(b)Γ(a+b)Γ(a+b+1)Γ(a+1)Γ(b)=a+ba又因为 E ( X 2 ) = Γ ( a + b ) Γ ( a ) Γ ( b ) ∫ 0 1 x a + 1 ( 1 − x ) b − 1 d x = Γ ( a + b ) Γ ( a ) Γ ( b ) ⋅ Γ ( a + 2 ) Γ ( b ) Γ ( a + b + 2 ) = a ( a + 1 ) ( a + b ) ( a + b + 1 ) \begin{aligned}\mathbb{E}(X^2)&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\int_0^1x^{a+1}(1-x)^{b-1}dx\\&=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\cdot\frac{\Gamma(a+2)\Gamma(b)}{\Gamma(a+b+2)}\\&=\frac{a(a+1)}{(a+b)(a+b+1)}\end{aligned} E(X2)=Γ(a)Γ(b)Γ(a+b)01xa+1(1x)b1dx=Γ(a)Γ(b)Γ(a+b)Γ(a+b+2)Γ(a+2)Γ(b)=(a+b)(a+b+1)a(a+1)由此得到 X X X的方差为 V a r ( X ) = a ( a + 1 ) ( a + b ) ( a + b + 1 ) − ( a a + b ) 2 = a b ( a + b ) 2 ( a + b + 1 ) \begin{aligned}\mathrm{Var}(X)&=\frac{a(a+1)}{(a+b)(a+b+1)}-\left(\frac{a}{a+b}\right)^2\\&=\frac{ab}{(a+b)^2(a+b+1)}\end{aligned} Var(X)=(a+b)(a+b+1)a(a+1)(a+ba)2=(a+b)2(a+b+1)ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值