定义1(次微分)给定开集 Ω ⊂ R d \Omega \subset \mathbb{R}^d Ω⊂Rd和凸函数 u : Ω → R u:\Omega \rightarrow \mathbb{R} u:Ω→R,对任意的 x ∈ Ω x\in \Omega x∈Ω,定义 u u u在点 x x x的次微分(subdifferential)为 ∂ u ( x ) : = { p ∈ R d : u ( z ) ≥ u ( x ) + ⟨ p , z − x ⟩ , ∀ z ∈ Ω } . \partial u(x):=\{p\in \mathbb{R}^d:u(z)\ge u(x)+\langle p, z-x\rangle, \forall z \in \Omega\}. ∂u(x):={p∈Rd:u(z)≥u(x)+⟨p,z−x⟩,∀z∈Ω}.次微分 ∂ u ( x ) \partial u(x) ∂u(x)是闭凸集。
定义2(支撑平面)在几何上,如果 p ∈ ∂ u ( x ) p \in \partial u(x) p∈∂u(x),则仿射函数 l x , p ( z ) : = u ( x ) + ⟨ p , z − x ⟩ l_{x,p}(z):=u(x)+\langle p,z-x \rangle lx,p(z):=u(x)+⟨p,z−x⟩从下侧在 x x x点接触 u u u,即 l x , p ≤ u 在 Ω 中 , 并 且 l x , p ( x ) = u ( x ) l_{x,p}\le u在\Omega中,并且l_{x,p}(x)=u(x) lx,p≤u在Ω中,并且lx,p(x)=u(x)此时 l x , p l_{x,p} lx,p是函数 u u u在点 x x x的支撑平面。
定义3(严格凸函数)一个凸函数 u u u在 Ω \Omega Ω中严格凸的,如果对任意 x ∈ Ω x \in \Omega x∈Ω和 p ∈ ∂ u ( x ) p \in \partial u(x) p∈∂u(x), u ( z ) > u ( x ) + ⟨ p , z − x ⟩ , ∀ z ∈ Ω \ { x } , u(z)>u(x)+\langle p,z-x\rangle,\quad \forall z \in \Omega \backslash \{x\}, u(z)>u(x)+⟨p,z−x⟩,∀z∈Ω\{x},等价地, u u u的支撑平面旨在一点接触 u u u的图。