次微分(subdifferential)

本文介绍了凸函数的次微分概念,它在数学优化和凸分析中扮演重要角色。次微分是函数在某点的局部性质,包含所有可能的切线方向。支撑平面的概念进一步阐述了次微分如何定义函数的下界。严格凸函数意味着函数的每个点只有一个接触的支撑平面,增强了函数的几何特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义1(次微分)给定开集 Ω ⊂ R d \Omega \subset \mathbb{R}^d ΩRd和凸函数 u : Ω → R u:\Omega \rightarrow \mathbb{R} u:ΩR,对任意的 x ∈ Ω x\in \Omega xΩ,定义 u u u在点 x x x的次微分(subdifferential)为 ∂ u ( x ) : = { p ∈ R d : u ( z ) ≥ u ( x ) + ⟨ p , z − x ⟩ , ∀ z ∈ Ω } . \partial u(x):=\{p\in \mathbb{R}^d:u(z)\ge u(x)+\langle p, z-x\rangle, \forall z \in \Omega\}. u(x):={pRd:u(z)u(x)+p,zx,zΩ}.次微分 ∂ u ( x ) \partial u(x) u(x)是闭凸集。

定义2(支撑平面)在几何上,如果 p ∈ ∂ u ( x ) p \in \partial u(x) pu(x),则仿射函数 l x , p ( z ) : = u ( x ) + ⟨ p , z − x ⟩ l_{x,p}(z):=u(x)+\langle p,z-x \rangle lx,p(z):=u(x)+p,zx从下侧在 x x x点接触 u u u,即 l x , p ≤ u 在 Ω 中 , 并 且 l x , p ( x ) = u ( x ) l_{x,p}\le u在\Omega中,并且l_{x,p}(x)=u(x) lx,puΩ,lx,p(x)=u(x)此时 l x , p l_{x,p} lx,p是函数 u u u在点 x x x的支撑平面。

定义3(严格凸函数)一个凸函数 u u u Ω \Omega Ω中严格凸的,如果对任意 x ∈ Ω x \in \Omega xΩ p ∈ ∂ u ( x ) p \in \partial u(x) pu(x) u ( z ) > u ( x ) + ⟨ p , z − x ⟩ , ∀ z ∈ Ω \ { x } , u(z)>u(x)+\langle p,z-x\rangle,\quad \forall z \in \Omega \backslash \{x\}, u(z)>u(x)+p,zx,zΩ\{x},等价地, u u u的支撑平面旨在一点接触 u u u的图。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值