矩阵范数的次微分the subdifferential of some Matrix Norms

  •  方向导数

     函数 f 在 \bar{x} 处,方向d 的方向导数:

                                            f(\bar{x},d)=\lim_{t\rightarrow 0^{+}}\frac{f(\bar{x}+td)-f(\bar{x})}{t}

     当方向导数f(\bar{x},d) 关于d 线性的,即f(\bar{x},d)=<a,d>,那么我们称 f 在\bar{x} 这一点 Gâteaux differentive,并且

导数\triangledown f(\bar{x})=a.。

  • 次梯度与次微分

       令 f 是一个凸的且合适的函数,即 domf ={ x \inE | f(x)<\infty } (域空间非空),在 \hat{x}, 如果\Phi 满足,对任意x,

                                                            \Phi\cdot (x-\hat{x})\leqslant f(x)-f(\hat{x})

就说 \Phi 是f 在 \hat{x} 这一点的次梯度 。

       例1,对于 f(x)=|x|, 在 0 这一点:

                                 \Phi (x-0)\leq |x|

容易求得:\Phi \subseteq [-1,1], 因此这个集合中的任一点都是x=0这一点的次梯度,这个集合就叫次微分。

        例2,对于 f(x)=x^{^{2}} ,在 0 这一点, 

                          \Phi x\leqslant x^{2}\Phi =0

可以看出对于光滑的函数,次梯度就等于通常意义上的梯度。

  • 次梯度应用

       次梯度有如下重要性质:

对于任何凸且合适的函数f ,点 \hat{x} 是f 的极值点,当且仅当满足条件 0\subseteq \partial f(\hat{x}), 即 0 要是函数在这一点的次梯度。

       例1: proximal mapping

                   min: \frac{1}{2}(a-y^{2})+\lambda |y|

                                      0\subseteq -(a-y)+\lambda \partial|y|,     a-y\subseteq \lambda \partial |y|

                                     1. 当y=0,a\subseteq \lambda [-1,1];  while |a|\leq \lambda ;

                                     2. 当y>0,a-y=\lambda ,y=a-\lambda ; while a>\lambda;

                                     3. 当y<0,a-y=-\lambda ,y=a+\lambda;while a<-\lambda;

  • 矩阵范数次微分

      令 ||\bullet || 是矩阵范数,如果 A 是m\times n 维实矩阵,那么 ||A|| 的次微分被如下定义:

                           \partial ||A||={G\in R^{m\times n}:||B||\geq ||A||+trace\left [ (B-A)^{T}G \right ],all B\in R^{m\times n}}

可以看到和函数次微分的定义本质上是一样的。

       在这里主要考虑正交不变范数,即 ||UAV||=||A||, U,V是正交的。对于这一类范数,可以通过它的奇异值来定义。对A

做奇异值分解,A=U\Sigma V^{T},奇异值按降序排列,\sigma _{1}\geq ...\geq \sigma _{n},所有这一类范数可以定义成奇异值的函数,||A||=\Phi (\sigma )

\sigma =(\sigma _{1},...,\sigma _{n})^{T}。例如当\Phi 是 l_{_p} norm,可以得到 ||A||=||\sigma ||_{p} 。当p=1,定义了核范数;当p=2,定义了Frobenius 范数;当

p=\infty,最大奇异值,定义了谱范数,等等。对于这一类通过奇异值定义的范数,有如下定理:

Theorem 1. 方向导数

       令 A,R 均为m\times n 的矩阵,对A 做奇异值分解,则A 的方向导数为:

                                 \lim_{\gamma \rightarrow 0^{+}}\frac{||A+\gamma R||-||A||}{\gamma }= \max_{d\in \partial \Phi (\sigma )}\sum_{i=1}^{n}d_{i}u_{i}^{T}Rv_{i}

u_{i},v_{i} 均是相对于\sigma _{i} 的奇异向量。

Theorem 2. 次微分

      令D 是m\times n 的对角矩阵,则矩阵 A 的范数的次微分为:

                       \partial ||A||=conv({UDV^{T},A=U\Sigma V^{T},d\in \partial \Phi (\sigma )})

      D是对角矩阵,对角元素是 \Phi (\sigma ) 的次梯度。conv是集合的convex hull, 即集合中元素的凸组合,对于一个矩阵来说,做奇异值分解时奇异值是唯一的,但奇异向量矩阵U和V不唯一。上式中,次微分中的任一元素  ,即次梯度,可以表示为:

                                            G=\sum \lambda _{i}U_{i}D_{i}V_{i}^{T}    ,\lambda _{i}\geq 0,\sum \lambda _{i}=1

例1. 核范数  \Phi (\sigma )=||\sigma ||_{1}

       对A做奇异值分解,A=U\Sigma V^{T},当 A 有s个0奇异值时,\partial ||\sigma ||_{1}=\left \{ x\in R^{n}:|x_{i}\leq 1,x_{i}=1,i=1,...,n-s| \right \}。那么对角矩阵的前 n-s个对角元素为1,后s个元素的绝对值小于等于1.将U划分成  U^{1},U^{2},V划分成 V^{1},V^{2},  U^{1},V^{1}有n-s个列。

      让G\in \partial ||A||, 然后

                                 G=\sum_{i}\lambda _{i}U_{i}D_{i}V_{i}^{T}

其中\sum \lambda _{i}=1,\lambda _{i}\geq 0A=U_{i}\Sigma V_{i}^{T},D_{i} 是对角矩阵,对角元素是 ||\sigma ||_{1} 的次梯度。

由于不同奇异向量相差一个正交矩阵,因此,

G=\sum_{i}\lambda _{i} U^{(1)}X_{i}X_{i}^{T}V^{(1)T}+\lambda _{i}U^{(2)}Y_{i}W^{i}Z_{i}^{T}V^{(2)T} =U^{(1)}V^{(1)}^{T}+\sum_{i} \lambda _{i}U^{(2)}Y_{i}W^{i}Z_{i}^{T}V^{(2)}^{T} =U^{(1)}V^{(1)}^{T}+U^{(2)}TV^{(2)}^{T}

这里 X_{i},Y_{i},Z_{i} 分别是n-s,m-n+s,s维的正交矩阵。W_{i} 是(m-n+s)\times s维的对角矩阵,\sigma _{1}表示矩阵最大奇异值。

T=\sum_{i}\lambda _{i}Y_{i}W_{i}Z_{i}^{T},\sigma _{1}(T)=\sigma _{1}(\lambda _{i}Y_{i}W_{i}Z_{i}^{T})\leq \sum_{i}\lambda _{i}\sigma _{1}(W_{i})\leq 1

最后,可以得到:

             \partial ||A||=\left \{ U^{(1)}V^{(1)} ^{T}+U^{(2)}TV^{(2)} all T\in R^{(m-n+s)\times s},\sigma _{1}(T)\leq 1\right \}

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值