INSTRUCTRAG: INSTRUCTING RETRIEVAL AUG-MENTED GENERATION VIA SELF-SYNTHESIZED RA-TIONALES

一、动机

不完美的检索器,会误导LLM,目前传统的RAG方法通过直接预测答案来应对这个问题,这种隐式去噪,难以解释和验证,显示去噪监督成本高。

二、解决方案

提出新的RAG框架INSTRUCTRAG旨在使语言模型(LM)显式去噪检索到的信息,并通过生成去噪响应(即推理)来证明其预测的最终答案。

 这个框架不需要额外的监督。

两个步骤:
1.给定一组问题-答案对,和可能带有噪声的检索文档,提示一个指令微调的LM合成去噪推理,这个推理就是分析文档并阐明这些文档是如何产生真实答案的。

2.生成的这些推理可以作为上下文学习示例或监督微调数据来使用,使LLM显示的学习去噪检索的内容。

三、方法实现

1.根据指令生成推理

给定一个问答对和一组检索到的文档,通过去噪指令提示一个现成的LLM生成相应的推理,区分有用的文档和噪声文档,并解释这些文档如何推到出真实答案。(为了去报合成的推理与真实答案一致,使用简单的字符串匹配来评估一致性),然后增强标准数据集 

2.在RAG中学习去噪推理

通过上一步的推理增强数据集T+,开发一个推理学习器,直接学习RAG的显式去噪,并采用高效的学习策略分别是:

1.INSTRUCTRAG-ICL:

模型通过上下文学习ICL来学习去噪推理。给定一个测试问题q和一组检索到的文档,首先从推理增强的训练数据集T+中随机抽取N个示例,然后提示模型遵循这些示例并生成推理r。

2.INSTRUCTRAG-FT

这个是通过SFT学习去噪推理。

训练和推理的数据格式:

核心目标:

 四、实验结果

评估指标:

Precision = (检索到的相关文档数量) / (检索到的文档总数)

Recall = (检索到的相关文档数量) / (数据库中所有相关文档的数量)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值