Large Language Model based Multi-Agents: A Survey of Progress and Challenges

一、摘要

  1. 背景

    • 大型语言模型(LLMs)在多种任务中取得了显著的成功,展现出与人类相媲美的规划和推理能力。
    • LLMs被用作自主智能体,自动执行任务,尤其在基于单个LLM的规划或决策智能体的基础上,基于LLM的多智能体系统在解决复杂问题和模拟世界方面取得了重大进展。
  2. 调查目的

    • 提供对基于LLM的多智能体系统(LLM-MA系统)的深入讨论,包括它们的基本方面和面临的挑战。
    • 使读者能够深入了解LLM-MA系统模拟的领域和环境、智能体的配置和通信方式,以及智能体能力增长的机制。
  3. 资源提供

    • 为有兴趣深入了解该领域的研究者总结了常用的数据集和基准测试,以便他们能够方便地访问这些资源。
    • 维护一个开源GitHub仓库,用于记录和更新LLM-MA系统的研究进展。
  4. 调查结构

    • 论文首先介绍背景知识,然后探讨LLM-MA系统如何与协作任务解决环境对齐。
    • 提出一个全面的框架,用于分析LLM-MA系统的智能体-环境界面、智能体配置、智能体通信和智能体能力获取。
    • 根据应用将当前工作分为问题解决和世界模拟两大类,并提供相关工具和资源。
    • 讨论未来研究的挑战和机遇,并总结结论。
  5. 目标读者

    • 该调查旨在为不同背景的读者提供对LLM-MA系统的全面了解,包括基本概念、最新研究趋势和应用,以及如何进一步探索和创新这一领域。

二、引言

  1. LLMs的潜力与进展

    • 大型语言模型(LLMs)在多个任务中取得了显著的成功,展现出与人类相媲美的规划和推理能力。
    • LLMs被用作自主智能体,自动执行任务,尤其在基于单个LLM的规划或决策智能体的基础上,基于LLM的多智能体系统在复杂问题解决和世界模拟方面取得了重大进展。
  2. LLM-based多智能体系统的优势

    • 多智能体系统通过专业化LLMs为不同智能体并允许它们之间互动,提供了更高级的能力,有效模拟复杂现实世界环境。
    • 这种方法利用了LLMs的沟通能力,以及它们在各个领域广泛的知识和在特定任务中专业化的潜力。
  3. 跨学科研究的吸引力

    • LLM-based多智能体系统已在软件开发、多机器人系统、社会模拟、政策模拟和游戏模拟等多种任务中显示出有希望的结果。
    • 该领域吸引了来自社会科学、心理学和政策研究等多个领域的研究者,研究论文数量迅速增加。
  4. 研究空白与本研究的动机

    • 尽管LLM-based多智能体系统的研究正在迅速发展,但缺乏系统的综述来总结这些研究,建立全面的研究蓝图,并检验未来的研究挑战。
    • 本调查论文旨在填补这一空白,为LLM-based多智能体系统的研究提供全面的概述和深入分析。
  5. 调查论文的目标与结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值