一、摘要
-
背景:
- 大型语言模型(LLMs)在多种任务中取得了显著的成功,展现出与人类相媲美的规划和推理能力。
- LLMs被用作自主智能体,自动执行任务,尤其在基于单个LLM的规划或决策智能体的基础上,基于LLM的多智能体系统在解决复杂问题和模拟世界方面取得了重大进展。
-
调查目的:
- 提供对基于LLM的多智能体系统(LLM-MA系统)的深入讨论,包括它们的基本方面和面临的挑战。
- 使读者能够深入了解LLM-MA系统模拟的领域和环境、智能体的配置和通信方式,以及智能体能力增长的机制。
-
资源提供:
- 为有兴趣深入了解该领域的研究者总结了常用的数据集和基准测试,以便他们能够方便地访问这些资源。
- 维护一个开源GitHub仓库,用于记录和更新LLM-MA系统的研究进展。
-
调查结构:
- 论文首先介绍背景知识,然后探讨LLM-MA系统如何与协作任务解决环境对齐。
- 提出一个全面的框架,用于分析LLM-MA系统的智能体-环境界面、智能体配置、智能体通信和智能体能力获取。
- 根据应用将当前工作分为问题解决和世界模拟两大类,并提供相关工具和资源。
- 讨论未来研究的挑战和机遇,并总结结论。
-
目标读者:
- 该调查旨在为不同背景的读者提供对LLM-MA系统的全面了解,包括基本概念、最新研究趋势和应用,以及如何进一步探索和创新这一领域。
二、引言
-
LLMs的潜力与进展:
- 大型语言模型(LLMs)在多个任务中取得了显著的成功,展现出与人类相媲美的规划和推理能力。
- LLMs被用作自主智能体,自动执行任务,尤其在基于单个LLM的规划或决策智能体的基础上,基于LLM的多智能体系统在复杂问题解决和世界模拟方面取得了重大进展。
-
LLM-based多智能体系统的优势:
- 多智能体系统通过专业化LLMs为不同智能体并允许它们之间互动,提供了更高级的能力,有效模拟复杂现实世界环境。
- 这种方法利用了LLMs的沟通能力,以及它们在各个领域广泛的知识和在特定任务中专业化的潜力。
-
跨学科研究的吸引力:
- LLM-based多智能体系统已在软件开发、多机器人系统、社会模拟、政策模拟和游戏模拟等多种任务中显示出有希望的结果。
- 该领域吸引了来自社会科学、心理学和政策研究等多个领域的研究者,研究论文数量迅速增加。
-
研究空白与本研究的动机:
- 尽管LLM-based多智能体系统的研究正在迅速发展,但缺乏系统的综述来总结这些研究,建立全面的研究蓝图,并检验未来的研究挑战。
- 本调查论文旨在填补这一空白,为LLM-based多智能体系统的研究提供全面的概述和深入分析。
-
调查论文的目标与结构:

最低0.47元/天 解锁文章
908

被折叠的 条评论
为什么被折叠?



