1.1 仿射集与凸集-1

2021 年 2 月 6 日星期六,想喝奶茶的一天。

想要 coco 今日推出的奶茶包,可惜要 88 赞。

废话少说,进入正题。

1 凸集与凸函数

1.1 仿射集与凸集-1

定义 1.1.1 若集合 W ⊆ R n W\subseteq\mathbb{R}^n WRn 中任意两个不同元素对于加法和数乘皆是封闭的,即任取 x 1 , x 2 ∈ W x_1,x_2\in W x1,x2W, λ 1 , λ 2 ∈ R \lambda_1,\lambda_2\in\mathbb{R} λ1,λ2R 皆有
λ 1 x 1 + λ 2 x 2 ∈ W , \lambda_1x_1+\lambda_2x_2\in W, λ1x1+λ2x2W,
则称集合 W W W 为线性子空间.

举例:过原点的直线、过原点的平面

定义 1.1.2 任取 x i ∈ R n , λ i ∈ R , i ∈ [ m ] , x_i\in\mathbb{R}^n,\lambda_i\in \mathbb{R},i\in [m], xiRn,λiR,i[m],
若向量 x ∈ R n x\in\mathbb{R}^n xRn 可以表示为
x = λ 1 x 1 + λ 2 x 2 + λ 3 x 3 + ⋯ + λ m x m , x=\lambda_1x_1+\lambda_2x_2+\lambda_3x_3+\dots+\lambda_mx_m, x=λ1x1+λ2x2+λ3x3++λmxm,
则称向量 x x x 为向量组 { x i ∣ i ∈ [ m ] } \{x_i|i\in [m]\} {xii[m]} 的线性组合.

与以往认知不同,如果 A A A B B B 的线性组合,则 A A A 是被表示对象, B B B 是表示对象.

定义 1.1.3若线性组合满足 λ 1 x 1 + λ 2 x 2 + λ 3 x 3 + ⋯ + λ m x m = 0 , \lambda_1x_1+\lambda_2x_2+\lambda_3x_3+\dots+\lambda_mx_m=0, λ1x1+λ2x2+λ3x3++λmxm=0, 当且仅当 λ 1 = λ 2 = λ 3 = ⋯ = λ m = 0 , \lambda_1=\lambda_2=\lambda_3=\dots=\lambda_m=0, λ1=λ2=λ3==λm=0, 则称向量组 { x i ∣ i ∈ [ m ] } \{x_i|i\in [m]\} {xii[m]} 线性无关,否则称其线性相关.

线性子空间 W W W 中极大线性无关的向量组成为该线性子空间的基,基中所含向量的个数成为线性子空间的维数.

将由范数 ∣ ∣ ⋅ ∣ ∣ ||·|| 定义的半径为 r r r,中心为 x x x 的球记为
B ( x , r ) = { y ∈ R n ∣ ∣ ∣ y − x ∣ ∣ ≤ r } , B(x,r)=\{y\in\mathbb{R}^n|||y-x||\leq r\}, B(x,r)={yRnyxr},
其中 ∣ ∣ ⋅ ∣ ∣ ||·|| 可以是任意范数,在无特别说明时一般为 2 范数.

【向量的范数】0 范数:向量中非零元素的个数;1 范数:绝对值之和;2 范数:向量的模;无穷范数:向量最大值.

定义 1.1.4给定集合 C ⊆ R n C\subseteq\mathbb{R}^n CRn 与点 x ∈ C , x\in C, xC, 若存在实数 r > 0 r>0 r>0,使得 B ( x , r ) ⊆ C , B(x,r)\subseteq C, B(x,r)C, 则称 x x x C C C 的内点.集合 C C C 的全体内点构成的集合称为 C C C 的内部,记为 i n t   C , int\ C, int C,
i n t   C = { x ∣ B ( x , r ) ⊆ C , ∃   r ∈ R + + } . int\ C=\{x|B(x,r)\subseteq C,{\exists}\ r\in \mathbb{R}_{++}\}. int C={xB(x,r)C, rR++}.

定义 1.1.5【开集与闭集】若对于集合 C ⊆ R n C\subseteq\mathbb{R}^n CRn 中的任意一点 x x x,总存在实数 r > 0 r>0 r>0,使得 B ( x , r ) ⊆ C B(x,r)\subseteq C B(x,r)C,则称集合 C C C 为开集.若集合 C ⊆ R n C\subseteq\mathbb{R}^n CRn 内的任意点列 x k {x_k} xk 的聚点均属于 C C C,则称为 C C C 为闭集.

简而言之,所有点都是内点的为开集;聚点都属于该集合的为闭集;

【推论】给定集合 C C C 的内部 i n t   C int \ C int C 为开集.并且相对于全空间而言,开集与闭集互为补集.

【聚点】任意半径的去心邻域与集合包含无穷多点的点为该集合的聚点,内点一定是聚点,聚点却不一定是内点.

定义 1.1.6【开集与闭集】给定集合 C ⊆ R n C\subseteq\mathbb{R}^n CRn,将包含集合 C C C 的最小闭集定义为 C C C 的闭包,定义为 c l   C cl \ C cl C.进一步,将属于 c l   C cl \ C cl C 但不属于 i n t   C int \ C int C 的点的全体构成的集合称为 C C C 的边界,记为 b d   C bd\ C bd C

有关资料如下:

参考图书:《凸优化理论与算法》

内点、外点、聚点、边界点、孤立点之间的区别和关系

实变函数(1)-集合与点集

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值