凸优化学习-(三)仿射集

凸优化学习

今天主要是几个概念的讲解,凸集,仿射集

学习笔记

一、仿射集(Affine Sets)

这是最简单的凸集,是凸集的一个特例。
定义一

文字:
一个集合 C C C是仿射集,若 ∀ x 1 , x 2 ∈ C \forall x_1,x_2\in C x1,x2C,则连接 x 1 , x 2 x_1,x_2 x1,x2的直线也在集合 C C C内。
数学:
∀ x 1 , x 2 ∈ C , ζ 1 : y = θ x 1 + ( 1 − θ ) x 2 ⊂ C x 1 ≠ x 2     x 1 , x 2 ∈ R n    θ ∈ R \forall x_1,x_2\in C,\zeta_1:y=\theta x_1+(1-\theta )x_2\subset C\\x_1\ne x_2\ \ \ x_1,x_2\in R^n\ \ \theta \in R x1,x2C,ζ1:y=θx1+(1θ)x2Cx1=x2   x1,x2Rn  θR
例一
在这里插入图片描述
在图一中,若 C C C是过 x 1 , x 2 x_1,x_2 x1,x2的直线,则 C C C为仿射集;若若 C C C是以 x 1 , x 2 x_1,x_2 x1,x2为起点、终点的线段,则 C C C不为仿射集(此时为凸集,后面会讲)。
例二
图二

图二
图二中的一个二维空间也是仿射集
定义二

若集合 C C C是仿射集,那么从中任意取出 k k k个点,这 k k k个点的仿射组合也在C内。

这个定义用到了一个仿射组合的概念,仿射组合的定义为 θ 1 x 1 + , ⋯   , + θ k x k , 其 中 x 1 , ⋯   , x k ∈ C , θ 1 + , ⋯   , + θ k = 1 \theta _1x_1+,\cdots,+\theta_kx_k,\\其中x1,\cdots ,x_k\in C,\theta_1+,\cdots,+\theta_k=1 θ1x1+,,+θkxkx1,,xkC,θ1+,,+θk=1
那么定义二也可以写成:
若集合 C C C是仿射集,那么从中任意取出 k k k个点, θ 1 x 1 + , ⋯   , + θ k x k ∈ C \theta _1x_1+,\cdots,+\theta_kx_k\in C θ1x1+,,+θkxkC,其中 θ 1 + , ⋯   , + θ k = 1 \theta_1+,\cdots,+\theta_k=1 θ1+,,+θk=1

两定义比较

需要说明的是,定义二虽然在 k = 2 k=2 k=2时就退化成定义一,但定义一和定义二是相等的。由定义一可以推 k = 3 , 4 , ⋯   , n k=3,4 ,\cdots,n k=3,4,,n的情况。

一种由普通仿射集构造特殊仿射集的方法

一般仿射集定义如下:
x 1 , x 2 ∈ C , 若 θ x 1 + ( 1 − θ ) x 2 ∈ C , 则 C 是 仿 射 集 x_1,x_2\in C,若\theta x_1+(1-\theta )x_2 \in C,则C是仿射集 x1,x2C,θx1+(1θ)x2C,C仿

考虑一个特殊仿射集:

x 1 , x 2 ∈ V , α x 1 + β x 2 ∈ V , α , β ∈ R x_1,x_2\in V,\alpha x_1+\beta x_2 \in V,\alpha ,\beta \in R x1,x2V,αx1+βx2Vα,βR
这个集合在显然为仿射集,如果你不太明白,可以把这个集合想成包括了 α + β = 1 \alpha + \beta =1 α+β=1时的情况的一种集合,即 x 1 , x 2 x_1,x_2 x1,x2的仿射组合一定也是在里面的。
并且这个组合有一个很好的性质,它是包含空间原点的。
构造特殊仿射集的方法
对于仿射集 C C C,定义集合 V = C − x 0 = { x − x 0 ∣ x ∈ C , x 0 ∈ C V=C-x_0=\lbrace x-x_0 \mid x\in C,x_0\in C V=Cx0={xx0xC,x0C
V V V即为我们所需的特殊仿射集, V V V也称与 C C C相关的子空间(一定经过原点)。
下面给出证明
证明:
  要证: V V V为仿射集,且 α v 1 + β v 2 ∈ V       ∀ v 1 , v 2 ∈ V , ∀ α , β ∈ R ⇒ α v 1 + β v 2 ∈ V \alpha v_1+\beta v_2\in V\ \ \ \ \ \forall v_1,v_2 \in V,\forall \alpha,\beta \in R \Rightarrow\alpha v_1+\beta v_2 \in V αv1+βv2V     v1,v2V,α,βRαv1+βv2V
  即证: α v 1 + β v 2 + x 0 ∈ C \alpha v_1 + \beta v_2 +x_0 \in C αv1+βv2+x0C
           ⇐ α ( v 1 + x 0 ) + β ( v 2 + x 0 ) + ( 1 − α − β ) x 0 ∈ C \ \ \ \ \ \ \ \ \ \ \Leftarrow \alpha (v_1+x_0)+\beta(v_2+x_0)+(1-\alpha-\beta)x_0 \in C           α(v1+x0)+β(v2+x0)+(1αβ)x0C
最后一步理解为三个属于 C C C的点做仿射组合。

一种特殊仿射集

线性方程组的解集。
即任意仿射集可以写成一组线性方程组的解集,反之亦然。
线性方程组:
C = { x ∣ A x = b }      A ∈ R m ⋅ n , b ∈ R m , x ∈ R n C=\lbrace x \mid Ax=b \rbrace \ \ \ \ A \in R^{m\cdot n},b \in R ^m,x \in R^n C={xAx=b}    ARmn,bRm,xRn R R R为向量, m , n m,n m,n为维数)
下面给出证明
证明:
 要证:对 ∀ x 1 , x 2 ∈ C , θ x 1 + ( 1 − θ ) x 2 ∈ C , C \forall x_1,x_2 \in C,\theta x_1 +(1-\theta)x_2\in C,C x1,x2C,θx1+(1θ)x2CC,是线性方程组 A x = b Ax=b Ax=b的解
 即证: A ( θ x 1 + ( 1 − θ ) x 2 ) = b A(\theta x_1+(1-\theta)x_2)=b A(θx1+(1θ)x2)=b
     = θ A x 1 + ( 1 − θ ) A x 2 =\theta Ax_1+(1-\theta)Ax_2 =θAx1+(1θ)Ax2
     = b =b =b

重要知识点

关于线性方程组的解集的子空间是 A A A的子空间。
下面给出证明
证明:
V = { x − x 0 ∣ x ∈ C }      ∀ x 0 ∈ C = { x − x 0 ∣ A x = b } , A x 0 = b = { x − x 0 ∣ A ( x − x 0 ) = 0 = { y ∣ A y = 0 } \begin{aligned} V &=\lbrace x-x_0\mid x\in C \rbrace \ \ \ \ \forall x_0 \in C \\ & =\lbrace x-x_0 \mid Ax=b \rbrace,Ax_0=b \\ &=\lbrace x-x_0 \mid A(x-x_0)=0 \\ &=\lbrace y \mid Ay=0 \rbrace \end{aligned} V={xx0xC}    x0C={xx0Ax=b},Ax0=b={xx0A(xx0)=0={yAy=0}

个人思考

记住仿射集最重要的一个特质:集合内任意两点构成的直线仍在集合内即可。其余的各种推导和证明都是在过定义,带进去就可以了。

纸质笔记

在这里插入图片描述在这里插入图片描述

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值