凸优化笔记(一):仿射集,凸集与锥

一.直线和线段

这里写图片描述这里写图片描述空间中的两个点。

直线:

这里写图片描述
这里写图片描述

线段:

这里写图片描述
这里写图片描述

二.仿射集(Affine Set)凸集(Convex Set)和锥(Cones)

仿射集

仿射集:通过集合这里写图片描述中任意两个不同点的直线仍然在集合C中,则集合C是仿射的。即
这里写图片描述
也可以理解为C包含了C中任意两点的系数之和为1的线性组合。

仿射组合:把具有这里写图片描述形式的点称为这里写图片描述的仿射组合,其中这里写图片描述

仿射集推广:

一个仿射集合包含其中任意点的仿射组合。

仿射集的例子:

直线
平面
超平面

凸集

凸集:集合C中任意两点间的线段任然在C中,那么集合C便是凸集,即
这里写图片描述

凸组合:称点这里写图片描述为点这里写图片描述的一个凸组合,其中这里写图片描述,且这里写图片描述

凸集推广:

一个集合是凸集等价于集合包含其中所有点的凸组合。

例子:
这里写图片描述
(最左边是凸集,右边两个不是凸集,很简单,找出两个点,看看其线段是不是有不在集合上面就行了。)

仿射集合凸集关系:

因为仿射集的条件比凸集的条件强,所以仿射集必然是凸集。\

锥:对于任意的这里写图片描述这里写图片描述都有这里写图片描述,那么就称集合C是是锥,即,
这里写图片描述

锥的例子:
这里写图片描述
(过原点的射线,射线族,角)

凸锥:集合C既是凸集又是锥,即对于任意这里写图片描述这里写图片描述都有
这里写图片描述

锥组合(非负线性组合):称点这里写图片描述为点这里写图片描述的一个锥组合,其中这里写图片描述

三.仿射包、凸包和锥包

仿射包:由集合这里写图片描述中的点的所有仿射组合组成的集合为C的仿射包,记为aff C:
这里写图片描述

也可以说,仿射包是包含C的最小的仿射集合。

仿射维数:

集合C的仿射维数为其仿射包的维数
三角形的仿射维数为2
线段的仿射维数为1
球的仿射维数为3

凸包:集合C中所有点的凸组合的集合称为凸包,记为conv C:
这里写图片描述
也就是说集合C的凸包是能够包含C的最小的凸集。
这里写图片描述

锥包:集合C的锥包是C中元素的所有锥组合的集合
这里写图片描述
也就是说,是包含集合C的最小凸锥。(如下图两个集合的锥包)
这里写图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值