深度学习001-tensorflow安装

选择类型

必须选择以下类型的TensorFlow之一来安装:

  • TensorFlow仅支持CPU支​​持。如果您的系统没有NVIDIA®GPU,则必须安装此版本。请注意,此版本的TensorFlow通常会更容易安装(通常在5或10分钟内),因此即使您有NVIDIA
    GPU,我们建议先安装此版本。
  • TensorFlow支持GPU。TensorFlow程序通常在GPU上比在CPU上运行得更快。因此,如果您的系统具有满足以下所示先决条件的NVIDIA®GPU,并且您需要运行性能关键型应用程序,则应最终安装此版本。

Ubuntu和Linux

如果要安装GPU版本的,需要安装一大堆NVIDIA软件(不推荐):

  • CUDA®Toolkit 8.0。有关详细信息,请参阅 NVIDIA的文档。确保您将相关的Cuda路径名附加到
    LD_LIBRARY_PATH环境变量中,如NVIDIA文档中所述。 与CUDA Toolkit 8.0相关的NVIDIA驱动程序。
  • cuDNN v5.1。有关详细信息,请参阅 NVIDIA的文档。确保CUDA_HOME按照NVIDIA文档中的描述创建环境变量。
  • 具有CUDA Compute Capability 3.0或更高版本的GPU卡。有关支持的GPU卡的列表,请参阅 NVIDIA文档。
  • libcupti-dev库,即NVIDIA CUDA Profile Tools界面。此库提供高级分析支持。要安装此库,请发出以下命令:

使用pip安装,分别有2.7和3.6版本的

# 仅使用 CPU 的版本
$  pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.1-cp27-none-linux_x86_64.whl

$  pip3 install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.1-cp36-cp36m-linux_x86_64.whl

Mac

macX下也可以安装2.7和3.4、3.5的CPU版本

# 2.7
$ pip install https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py2-none-any.whl
# 3.4、3.5
$ pip3 install https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.0.1-py3-none-any.whl

上面方法报错的话可以通过下面解决:

$ pip install tensorflow      # Python 2.7; CPU support (no GPU support)
$ pip3 install tensorflow     # Python 3.n; CPU support (no GPU support)
$ pip install tensorflow-gpu  # Python 2.7;  GPU support
$ pip3 install tensorflow-gpu # Python 3.n; GPU support 

安装成功后输入以下代码测试:

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

在这里插入图片描述
将警告等级设为2可以去除红色报错

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值