1、gallery和probe:
gallery是候选行人库,probe是待查询输入,也叫查询图像(query)。
2、single shot 和muti shot:
前者是指gallery中每个人的图像为一张(N=1),而后者是指gallery中每个人的图像为N>1张图像,同样的Rank-1下,一般N越大,得到的识别率越高。
3、rank-n:
搜索结果中最靠前(置信度最高)的n张图有正确结果的概率。
例如: lable为m1,在100个样本中搜索。
如果识别结果是m1、m2、m3、m4、m5……,则此时rank-1的正确率为100%;rank-2的正确率也为100%;rank-5的正确率也为100%;
如果识别结果是m2、m1、m3、m4、m5……,则此时rank-1的正确率为0%;rank-2的正确率为100%;rank-5的正确率也为100%;
如果识别结果是m2、m3、m4、m5、m1……,则此时rank-1的正确率为0%;rank-2的正确率为0%;rank-5的正确率为100%
4、Precision(准确率) 和 Recall(召回率):
Precision就是检测出来的样本有多少是准确的,Recall就是所有准确的条目有多少被检索出来了。
准确率Precision = 提取出的正确信息条数 / 提取出的信息条数
召回率Recall = 提取出的正确信息条数 / 样本中的信息条数
准确率和召回率都是针对同一类别来说的,并且只有当检索到当前类别时才进行计算,比如在person re-id中,一个人的label为m1,在测试集中包含3张此人的图像,检索出来的图像按照得分从高到低顺序为m1、m2、m1、m3、m4、m1….,此时
- 第一次检索到m1&#