自然语言处理(NLP)遇到的准确率与召回率
准确率(Accuracy)
,召回率(Recall)
是作为机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域的评价指标
计算:
召回率(Recall) = 系统检索到的相关文件 / 系统所有相关的文件总数
准确率(Precision) = 系统检索到的相关文件 / 系统所有检索到的文件总数
注意差异就在所有相关和所有检索。
借鉴大神的图示表示如下:
整个数据集数据为 N = A + B + C +D
所有相关的文件总数,也可以说是整个训练集中符合要求的所有文件或文本数目。即图中 A+C
所有检索到的文件总数,也可以说是整个训练集中按要求查询出来的文件或文本数目。即图中 A+B
召回率也叫查全率,准确率也叫查准率
准确率和召回率是互相影响的,理想情况下肯定是想做到两者都高,
但是一般情况下
准确率高、召回率就低,
召回率低、准确率高,
当然如果两者都低,那是什么地方出问题了。**
。
。
。
。