自然语言处理(NLP)遇到的准确率与召回率

自然语言处理(NLP)遇到的准确率与召回率

准确率(Accuracy),召回率(Recall)是作为机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域的评价指标

计算:

召回率(Recall) = 系统检索到的相关文件 / 系统所有相关的文件总数

准确率(Precision) = 系统检索到的相关文件 / 系统所有检索到的文件总数

注意差异就在所有相关所有检索

借鉴大神的图示表示如下:

image-20201117175521439

整个数据集数据为 N = A + B + C +D

所有相关的文件总数,也可以说是整个训练集中符合要求的所有文件或文本数目。即图中 A+C

所有检索到的文件总数,也可以说是整个训练集中按要求查询出来的文件或文本数目。即图中 A+B

召回率也叫查全率,准确率也叫查准率

准确率和召回率是互相影响的,理想情况下肯定是想做到两者都高,

但是一般情况下

  • 准确率高、召回率就低,

  • 召回率低、准确率高,

当然如果两者都低,那是什么地方出问题了。**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值