nlp之准确率和召回率

举例:

真实:          N N N T T N N N N T

算法预测:   N N T T N N N N N T

则正样本   P(准确率)=2/3   R(召回率)=2/3

真实:          N N N T T N N N N T

算法预测:   N T T T T N N T N T

正样本: P(准确率)=3/6   R(召回率)=3/3

 

举例2:

对于正常邮件

p=16/18    r=16/20

对于垃圾邮件

p=3/7 r=3/5

F1-score(a)=2 * (8/9*0.8)/(8/9+0.8) = 2a

 F1-score(b)=2 * (3/7*0.6)/(3/7+0.6)=2b

对于所有邮件 p=(8/9+3/7)/2  r=(0.8+0.6)/2 F1-score=(a+b)/2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值