数据结构2————链表的简单应用1
文章目录
一.前言
在我的上一篇博客中,介绍和链表是什么和链表的基本操作,即创建输出,增删改查。这些是链表应用的基础,几乎所有链表的应用都是在这些的基础上进行的延伸和融合。所以对于链表的基本操作一定要做到熟练掌握。
在我的上篇博客中还写了一些关于链表的应用。
1. 升序合并
2. 基于链表的冒泡和插入排序
3. 删除a链中于b链重复的节点
4. n个小孩报数问题
5. 简单的学生管理系统
在上篇博客写完后,又学习了一些关于链表的应用,所以写这片博客跟大家分享一下
1. 链表的逆置
2. 两个升序合并为降序
3. 两个长度不同的链表交叉合并
4. 简易通讯录
5. 约瑟夫环问题
二.链表的逆置
1. 方法一
思路:
灵活运用头插法进行逆置,初始为一个头节点,找一个临时指针存下一个节点地址,将下一个节点以头插法的形式插入(插入前备份指针域)。
核心代码
//插入节点的指针域(下一个节点的地址)备份
pTemp1=pTemp2;
pTemp2=pTemp1->next;
//头插
pTemp1->next=pHead->next;
pHead->next=pTemp1;
完整代码
void contrary(struct node *pHead)
{
struct node *pTemp1=pHead->next,*pTemp2=pHead->next;
pHead->next=NULL;
while(pTemp2)
{
pTemp1=pTemp2;
pTemp2=pTemp1->next;
pTemp1->next=pHead->next;
pHead->next=pTemp1;
}
}
2. 方法二
思路:
从第一个节点开始,改变每个节点的指针域指向,直到最后一个节点,是否原来不存数据的头节点,新申请一个头节点
核心代码
pi_q=pi;//移动
pi=pi_h;
pi_h=pi->next;
//改变指向
pi->next=pi_q;
pi——当前要改变的节点
pi_q——当前要改变的节点前节点
pi_h——当前要改变的节点后节点
完整代码
struct lianbiao *Nizhi(struct lianbiao *pHead)
{
struct lianbiao *pi=pHead,*pi_q,*pi_h=pHead->next,*p;
while(pi_h)
{
pi_q=pi;//移动
pi=pi_h;
pi_h=pi->next;
pi->next=pi_q;
}
free(pHead);
pHead->next->next=NULL;//原来头部指针清0
p=(struct lianbiao *)malloc(sizeof(struct lianbiao));
p->next=pi;
return p;
}
二. 两个升序链表合并为降序
1. 方法一
将俩个升序链表合并升序链表,再调用上面的(逆置)函数进行逆置
2.方法二
思路
类似于两个升序链表合成一个升序链表,使用3个指针,a,b.a指向La链表链表当前节点,b指向Lb链表的当前节点,比较a,b所指的节点数据域大小,将小的以头插的方式插到La头节点后(插入前备份),然后小的后移。
核心代码
//备份和移动
La_t=La->next;
La->next=pHead_a->next;
//头插
pHead_a->next=La;
La=La_t;
完整代码
void merge(struct node *pHead_a,struct node *pHead_b)
{
struct node *La,*Lb,*Lc,*La_t,*Lb_t;
La=pHead_a->next;
Lb=pHead_b->next;
pHead_a->next=NULL;
while(La&&Lb)
{
if((La->date)<(Lb->date))
{
La_t=La->next;
La->next=pHead_a->next;
pHead_a->next=La;
La=La_t;
}
else
{
Lb_t=Lb->next;
Lb->next=pHead_a->next;
pHead_a->next=Lb;
Lb=Lb_t;
}
}
while(La)//假如b链表遍历完,a链表未遍历完,将a链表剩下的节点进行头插
{
La_t=La->next;
La->next=pHead_a->next;
pHead_a->next=La;
La=La_t;
}
while(Lb)
{
Lb_t=Lb->next;
Lb->next=pHead_a->next;
pHead_a->next=Lb;
Lb=Lb_t;
}
}
三.交叉合并
题意要求
将两个长度不一样的链表进行交叉合并(即a1,b1,a2,b2),并以长度短的为开头。当短的排完后,剩下的节点全部为长链表
思路
使用Lx,Ly,Lz三个指针,Lx指向短链表,Ly指向长链表,Lz指向已排好序的链表尾部,使用指针通过Lz,Lx,Ly将它们交叉串起来
核心代码
Lz->next=Lx; //连接lz和短链表的当前节点
Lx_h=Lx->next;//备份Lx的指针域
Lx->next=Ly;//连接Lx当前节点和Ly当前节点
Lz=Ly;//移动lz,使lz成为当前已排好节点的尾部
Lx=Lx_h;//移动lx,使lx成为短链表未排好序的第一个
Ly=Ly->next;//移动ly,使ly成为长链表未排好序的第一个
完整代码
void merge(struct node *pHead_x,struct node *pHead_y)
{
struct node *Lx,*Lx_h,*Ly,*Lz;
Lx=pHead_x->next;
Ly=pHead_y->next;
Lz=pHead_x;
while(Lx)
{
Lz->next=Lx;
Lx_h=Lx->next;
Lx->next=Ly;
Lz=Ly;
Lx=Lx_h;
Ly=Ly->next;
}
Lz->next=Ly;
}
四.简单通讯录
题意:
通信录应该包括联系人姓名,电话,类别
实现通讯录的信息的增删改查
拓展:输出按人名的字典顺序输出
思路
这道题是链表的使用链表的基本操作,创建,遍历,增删改查,排序的糅合
五.约瑟夫环
1. 基本款
题意:
n个人按顺时针方向围坐在一张圆桌周围,每个人手中持有一张密码。 一开始任选将第一个人的密码牌作为报数上限m,从第一个人开始从1报数,直到报到m为止,报道m的人出队,将他的密码作为新的m,继续报数,重复直到只剩一个人的时候停止。要求密码随机
思路:
- 创建一个循环链表(和单链表相比,头节点存数据,尾节点指针域存头指针)。每个节点的数据域由两部分构成,序号和密码,密码由随机函数rand()产生随机数,序号由建立时依次填入。
- 进行循环,先使用指针找到报到m的节点(人),再对这个节点进行删除操作(不释放空间)。然后将这个节点的密码赋给m,输出本次出队结果。然后再进行循环。
- 循环的停止,当指针的和他的指针域相同时,出循环。此时剩下的节点为最后一个人。
核心代码
while(pi!=pi->next)
{
for(i=0;i<M-1;i++)//寻找本次需要删除的节点
{
pi_q=pi;
pi=pi->next;
}
M=pi->num;//换密码
pi_q->next=pi->next;//出队
pi=pi->next;//移动`
}
完整代码
struct node *f1(struct node *pHead,int iCound)
{
struct node *pi=pHead,*pi_q=pHead->next;
int i,M,a[Long]={0},j;
while(pi_q->next!=pi)
pi_q=pi_q->next;
M=pi->num;
while(pi!=pi->next)
{
for(i=0;i<M-1;i++)//寻找本次需要删除的节点
{
pi_q=pi;
pi=pi->next;
}
printf("本次密码为%d ",M);//输出查看
printf("本次序号为%d出队\n",pi->NO);
a[pi->NO]++;//表示出队
printf("已出队:");
for(j=0;j<Long;j++)
if(a[j]!=0)
printf("%-5d",j);
printf("\n还在队中:");
for(j=0;j<iCound;j++)
if(a[j]==0)
printf("%-5d",j);
printf("\n\n");
M=pi->num;//换密码
pi_q->next=pi->next;//删除
pi=pi->next;
}
printf("最后在队中的为%d\n",pi->NO);
}
2. 扩展1
拓展内容:
不从1号开始报数,第一个报数的人随机选择
思路:
大致同第一个一样,不过再进循环前找到随机开始的第一个报数人
新增代码
M=rand()%(iCound-1)+1;
printf("从%d个人开始报数\n",M);
for(i=0;i<M-1;i++)//寻找第一个人
{
pi_q=pi;
pi=pi->next;
}
M=pi->num;
完整代码
void f1_1()
{
int j;
printf("已出队:");
for(j=0;j<Long;j++)
if(a[j]!=0)
printf("%-5d",j);
printf("\n还在队中:");
for(j=1;j<iCound+1;j++)
if(a[j]==0)
printf("%-5d",j);
printf("\n\n");
}
struct node *f1(struct node *pHead,int iCound)
{
struct node *pi=pHead,*pi_q=pHead->next;
int i,M;
while(pi_q->next!=pi)
pi_q=pi_q->next;
M=rand()%(iCound-1)+1;
printf("从%d个人开始报数\n",M);
for(i=0;i<M-1;i++)//寻找第一个人
{
pi_q=pi;
pi=pi->next;
}
M=pi->num;
while(pi!=pi->next)
{
for(i=0;i<M-1;i++)//寻找本次需要删除的节点
{
pi_q=pi;
pi=pi->next;
}
printf("本次密码为%d ",M);//输出查看
printf("本次序号为%d出队\n",pi->NO);
a[pi->NO]++;
f1_1();
M=pi->num;//换密码
pi_q->next=pi->next;//删除
pi=pi->next;
}
printf("最后在队中的为%d\n",pi->NO);
}
3. 扩展2
拓展内容:
某个人出队时,再次开始报数,随机从左或从右随机开始报数
思路
- 创建一个双向循环链表,与单表相比,指针域分为两部分,左指针和右指针(llink和rlink),左指针指向前一个节点,右指针指向后一个节点,头节点的左指针域存尾节点的地址。尾节点右指针存头节点地址。
- 同二相似,随机选择第一个开始报数的人。选择后进入循环
- 使用rand()函数,若值为0,使用左指针开始向前循环,若值为1,使用右指针开始向后遍历循环
- 同一相似,开始遍历链表到m时,使这个节点出队。
- m重新赋值,再次进行选择方向
- 当节点的左右指针域都存着自己节点的地址时,停止循环。此时,剩下的节点为最后一个人。
核心代码
for(i=0;i<M-1;i++)//寻找本次需要删除的节点
{
if(order)
{
pi_q=pi;
pi=pi->rlink;
pi_h=pi->rlink;
}
else
{
pi_h=pi;
pi=pi->llink;
pi_q=pi->llink;
}
}
if(M==1)//密码为1时进行的处理
{
if(order)
pi_h=pi->rlink;
else
pi_q=pi->llink;
}
pi_q->rlink=pi->rlink;//删除
pi_h->llink=pi->llink;
order=rand()%2; 方向选择
if(order)
i=pi->rlink;
else
pi=pi->llink;
完整代码
void f1_1()
{
int j;
printf("已出队:");
for(j=0;j<Long;j++)
if(a[j]!=0)
printf("%-5d",j);
printf("\n还在队中:");
for(j=1;j<iCound+1;j++)
if(a[j]==0)
printf("%-5d",j);
printf("\n\n");
}
struct node *f1(struct node *pHead,int iCound)
{
struct node *pi=pHead,*pi_q=pHead->llink,*pi_h=pHead->rlink;
int i,M;
int order;
M=rand()%(iCound-1)+1;
printf("从%d个人开始报数\n",M);
for(i=0;i<M-1;i++)//寻找第一个人
{
pi_q=pi;
pi=pi->rlink;
pi_h=pi->rlink;
}
M=pi->num;
order=rand()%2;
while(pi->llink!=pi&&pi->rlink!=pi)
{
if(order)
printf("本次向右转 ");
else
printf("本次向左转 ");
printf("本次密码为%d ",M);
for(i=0;i<M-1;i++)//寻找本次需要删除的节点
{
if(order)
{
pi_q=pi;
pi=pi->rlink;
pi_h=pi->rlink;
}
else
{
pi_h=pi;
pi=pi->llink;
pi_q=pi->llink;
}
}
if(M==1)
{
if(order)
pi_h=pi->rlink;
else
pi_q=pi->llink;
}
printf("本次序号为%d出队\n",pi->NO);//输出查看
a[pi->NO]++;
f1_1();
M=pi->num;//换密码
pi_q->rlink=pi->rlink;//删除
pi_h->llink=pi->llink;
//free(pi);
order=rand()%2;
if(order)
pi=pi->rlink;
else
pi=pi->llink;
}
printf("最后在队中的为%d\n",pi->NO);
}