KPCA是一种非线性主元分析方法,用于降维。主要思想:通过某种事先选择的非线性映射函数Ф将输入矢量X映射到一个高维线性特征空间F之中,然后在空间F中使用PCA方法计算主元成分,核主成分分析最主要是非线性映射函数Ф的选取。
算法步骤:
Step 1. 数据标准化处理。
Step 2. 求核矩阵K,使用核函数来实现将原始数据由数据空间映射到特征空间。采用的核函数为径向基核函数,公式为:
Step 3. 中心化核矩阵Kc,用于修正核矩阵。公式为:
其中, 为N×N的矩阵,每一个元素都为1/N
Step 4. 计算矩阵KC的特征值 ,对应的