贪心+单调栈(Leetcode 402+316+321+1081)
这里总结了一下leetcode的三道题目,都是使用相似的思路,就是使用单调栈去逐步删除元素。
402. 移掉K位数字
给定一个以字符串表示的非负整数num ,移除这个数中的 k 位数字,使得剩下的数字最小。
注意:
num 的长度小于 10002 且 ≥ k。
num 不会包含任何前导零。
思路:
首先逐个比较,符合条件的放到双向列表里:
for (int i = 0; i < length; i++) {
char digit=num.charAt(i);
while (!dq.isEmpty() && k>0 && dq.peekLast()>digit){
dq.pollLast();
k--;
}
dq.offerLast(digit);
}
但是有可能后面的数字元素比较有序,最后还没有删除完,所以第二步:
for (int i = 0; i < k; i++) {
dq.pollLast();
}
最后将双向列表转换为字符串,但是得考虑第一个数字为0的情况:
while (!dq.isEmpty()){
Character digit = dq.pollFirst();
if(leadZero && digit=='0') continue;
leadZero=false;
sb.append(digit);
}
答案
import java.util.Deque;
import java.util.LinkedList;
public class removeKdigits {
public String removeKdigits(String num, int k) {
Deque<Character> dq=new LinkedList<>();
int length=num.length();
for (int i = 0; i < length; i++) {
char digit=num.charAt(i);
while (!dq.isEmpty() && k>0 && dq.peekLast()>digit){
dq.pollLast();
k--;
}
dq.offerLast(digit);
}
// 万一k最后还是不等于0 在这里舍弃最后的k位
for (int i = 0; i < k; i++) {
dq.pollLast();
}
StringBuilder sb=new StringBuilder();
boolean leadZero=true;
// 考虑开始位置是0的情况
while (!dq.isEmpty()){
Character digit = dq.pollFirst();
if(leadZero && digit=='0') continue;
leadZero=false;
sb.append(digit);
}
return sb.length()==0?"0":sb.toString();
}
// 方法2 经过测试 比上述方法还要慢 所以记住方法1为主
public String removeKdigits2(String num, int k) {
int len=num.length();
char[] stack=new char[len-k];
int top=-1;
int remain=len-k;
// 删除k个的情况
for (int i = 0; i < len; i++) {
char digit=num.charAt(i);
while (top>=0 && k>0 && stack[top]>digit){
top--;
k--;
}
if(top<remain-1){
stack[++top]=digit;
}else{
k--;
}
}
// 数组转换成字符串
boolean leadZero=true;
String res=new String();
for (char c : stack) {
if(leadZero && c=='0') continue;
leadZero=false;
res+=c;
}
return res.length()==0?"0":res;
}
}
上述方法一和方法二的思路一致,就是方法一用的Dequeue 方法二用的数组。
316. 去除重复字母
该题目和上一题差不多 区别仅在于首先创建个数组 标记每个字母出现的次数,并且删除的个数不是固定的k
更新完频次后 后面的做法和上一题没什么区别
import java.util.Deque;
import java.util.LinkedList;
public class removeDuplicateLetters316 {
public String removeDuplicateLetters(String s) {
// 首先记录各个字母出现的次数
Deque<Character> dq=new LinkedList<>();
int[] charactersFrequency=new int[26];
char[] chars = s.toCharArray();
// 更新出现的频次
for (char c :chars){
charactersFrequency[c-'a']++;
}
int len=chars.length;
for (char c : chars) {
if(!dq.contains(c)){
while (!dq.isEmpty() && dq.peekLast()>c && charactersFrequency[dq.peekLast()-'a']>0){
dq.pollLast();
}
dq.offerLast(c);
}
charactersFrequency[c-'a']--;
}
// dq转换为StringBuilder
StringBuilder sb=new StringBuilder();
for (Character c : dq) {
sb.append(c);
}
return sb.toString();
}
}
321. 拼接最大数
在上面两题的基础上变得复杂了些;
思路:
- 因为最后两个数组留下来的元素数目之和是固定的,是k 。所以需要遍历所有长度的情况
- 延续上述两题的做法,在某个数组内留下i个数字 即函数maxSubsequence
- 得到的结果需要按照最大值的形式进行合并,并且不同长度遍历的情况之间也要相互比较大小
import java.util.Deque;
import java.util.LinkedList;
public class maxNumber {
public int[] maxNumber(int[] nums1, int[] nums2, int k) {
int m=nums1.length,n=nums2.length;
int[] maxSubsequence=new int[k];
// 遍历nums1 和 nums2 长度不同的情况
// nums1 最多k-n个 最多m个
int start=Math.max(0,k-n),end=Math.min(k,m);
for (int i=start;i<=end;i++){
int[] subsequence1=maxSubsequence(nums1,i);
int[] subsequence2=maxSubsequence(nums2,k-i);
int[] curMaxSubsequence=merge(subsequence1,subsequence2);
if(compare(curMaxSubsequence,0,maxSubsequence,0)>0){
System.arraycopy(curMaxSubsequence,0,maxSubsequence,0,k);
}
}
return maxSubsequence;
}
// 某一个数组内部进行 留下k个数据的情况
public int[] maxSubsequence(int[] nums,int k){
Deque<Integer> dq=new LinkedList<>();
int len=nums.length;
// 通过这个数组的方式 避免了使用Dequeue
// 但经过测试Dequeue 运行速度快一点
// 留下k个的情况
//int[] stack=new int[k];
int remain=len-k;
for (int i = 0; i < len; i++) {
int num = nums[i];
while (!dq.isEmpty() && dq.peekLast() < num && remain > 0) {
dq.pollLast();
remain--;
}
dq.offerLast(num);
}
// 万一remain最后还没归0
for (int i = 0; i < remain; i++) {
dq.pollLast();
}
int[] res=new int[k];
for (int i = 0; i < k; i++) {
res[i]=dq.pollFirst();
}
return res;
}
public int[] merge(int[] nums1,int[] nums2){
int len1=nums1.length,len2=nums2.length;
if(len1==0) return nums2;
if(len2==0) return nums1;
int mergeLen=len1+len2;
int[] mergedNum=new int[mergeLen];
int index1=0,index2=0;
for (int i = 0; i < mergeLen; i++) {
if(compare(nums1,index1,nums2,index2)>0){
mergedNum[i]=nums1[index1++];
}
else{
mergedNum[i]=nums2[index2++];
}
}
return mergedNum;
}
// 注意这边先看最高位大小 之后再看位数长度
public int compare(int[] nums1,int index1,int[] nums2,int index2){
int len1=nums1.length,len2=nums2.length;
while (index1<len1 && index2<len2){
int difference=nums1[index1]-nums2[index2];
if(difference!=0){
return difference;
}else{
index1++;
index2++;
}
}
return (len1-index1)-(len2-index2);
}
}