【CV数据集介绍-13】SARD - 野外人员搜索和救援数据集:救援任务中的珍贵资源

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

  在灾难救援和紧急情况下,快速准确地定位和识别遇险人员是救援工作的关键。今天,我将为大家介绍一个专为搜索与救援任务而设计的宝贵数据集 ——SARD - Search And Rescue Dataset 。它为开发和评估 AI 模型提供了丰富的数据支持,帮助在紧急情况下拯救生命。
在这里插入图片描述

一、数据集概况

  SARD 数据集由 Datasets 提供,于 2025 年 5 月 2 日发布在 Roboflow Universe 平台上。该数据集包含了从无人机拍摄的真实图像中收集的多模态(图像 / 标签)信息,旨在支持开发和评估 AI 模型,以便在灾难或紧急情况下定位、识别和跟踪遇险人员。

二、数据样本数量

  SARD 数据集的图片分为三个子集:

  训练集:4000 张图像,用于模型的训练,帮助模型学习人类在不同场景下的特征和姿态,从而提高模型的识别能力。

  
验证集:1100 张图像,用于在模型训练过程中进行验证,评估模型在未见过的数据上的表现,帮助调整模型参数,避免过拟合。

  测试集:500 张图像,用于最终测试模型的性能,提供一个客观的评估指标,以确定模型在实际应用中的有效性。
  数据的文件夹格式如下:
在这里插入图片描述
  部分图片展示如下:
在这里插入图片描述
在这里插入图片描述
  标签格式如下:
在这里插入图片描述

三、类别信息

  SARD 数据集仅包含一个类别 ——人类(human)。所有图像都围绕这一类别展开,涵盖了各种姿态、场景和环境下的人员图像,包括疲惫和受伤的人员以及不同类型的运动姿态。这种多样性和丰富性使得数据集能够有效地训练出鲁棒的模型,适用于复杂多变的搜索与救援场景。

四、数据采集与特点

  这些图像由 DJI Phantom 4A 无人机的高分辨率相机记录,具有以下特点:

  高分辨率:无人机搭载的高分辨率相机能够捕捉清晰、细节丰富的图像,有助于模型更准确地识别和定位人员。

  多姿态覆盖:参与数据集采集的演员模拟了疲惫和受伤的人以及经典类型的运动,确保了数据集中包含了各种可能的人员姿态和行为模式,提高了模型在实际救援场景中的适用性。

  真实环境模拟:图像采集于真实环境,充分考虑了灾难或紧急情况下可能遇到的各种复杂条件,如不同的光照、天气和地形等,使模型能够在实际应用中表现出色。

五、数据集的应用价值

  SARD 数据集具有重要的应用价值,主要体现在以下几个方面:

  提升救援效率:基于该数据集训练的 AI 模型能够在灾难现场快速定位遇险人员,为救援团队提供精准的位置信息,大大缩短搜索时间,提高救援效率。

  保障救援人员安全:通过无人机拍摄和 AI 模型分析,救援团队可以在不直接进入危险区域的情况下,初步了解受灾区域的人员分布情况,提前规划救援路线和策略,降低救援人员的风险。

  支持多场景救援:数据集的多样性和丰富性使其适用于各种灾难和紧急情况,如地震、洪水、山体滑坡、森林火灾等,为不同类型的救援任务提供通用的解决方案。

  推动 AI 技术发展:SARD 数据集为研究人员和开发者提供了一个标准化的测试平台,促进了搜索与救援领域 AI 技术的研究、创新和进步。

六、推荐模型与工具

  对于 SARD 数据集,最佳实践是使用 YOLO(You Only Look Once)模型,尤其是 YOLOv5 或 YOLOv8。这些模型在实时目标检测任务中表现出色,能够快速准确地识别图像中的人类目标,非常适合搜索与救援场景下的快速响应需求。

七、总结

  SARD - Search And Rescue Dataset 是一个专注于搜索与救援任务的高质量数据集,为 AI 模型的开发和评估提供了丰富的资源。通过其大量多姿态的人类图像和真实的环境模拟,该数据集在提升救援效率、保障救援人员安全和支持多场景救援等方面发挥着关键作用。如果你对搜索与救援领域的 AI 应用感兴趣,或者正在从事相关项目的研究和开发,SARD 数据集无疑是一个值得深入探索的宝贵资产。

  希望这篇介绍能够帮助大家更好地了解 SARD 数据集,激发更多创新的救援解决方案,共同为拯救生命贡献力量。

  注: 博主目前收集了6900+份相关数据集,有想要的可以领取部分数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值