题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。 例如矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
经典的回溯法的问题。
/**
用一个状态数组保存之前访问过的字符,然后再分别按上,下,左,右递归
*/
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str) {
int flag[] = new int[matrix.length];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (helper(matrix, rows, cols, i, j, str, 0, flag))
return true;
}
}
return false;
}
private boolean helper(char[] matrix, int rows, int cols, int i, int j, char[] str, int k, int[] flag) {
int index = i * cols + j;
if (i < 0 || i >= rows || j < 0 || j >= cols || matrix[index] != str[k] || flag[index] == 1)
return false;
if(k == str.length - 1) return true;
flag[index] = 1;
if (helper(matrix, rows, cols, i - 1, j, str, k + 1, flag)
|| helper(matrix, rows, cols, i + 1, j, str, k + 1, flag)
|| helper(matrix, rows, cols, i, j - 1, str, k + 1, flag)
|| helper(matrix, rows, cols, i, j + 1, str, k + 1, flag)) {
return true;
}
flag[index] = 0; //体现了回溯。条件不符合,还原为未访问过的标记
return false;
}
}
剑指offer+回溯:(C++)
class Solution {
public:
/*
这个题目是回溯法的典型题目;
还有八皇后问题也是经典的回溯法例题,大家可以参考;在《剑指offer》书中也给出了八皇后问题的思路;
不过,那个是在全排列问题中引出来的。其实回溯法也是全排列的一种方案,在本题中,也就是尝试了
matrix矩阵中所有点作为起点的方法,然后依据这个点进行向四个方向的递归;
在递归中,不满足题目的会自动出栈回到上一个状态;
*/
bool hasPath(char* matrix, int rows, int cols, char* str)
{
if(matrix==NULL||rows<1||cols<1||str==NULL) return false;
bool *flag=new bool[rows*cols];
memset(flag,false,rows*cols);
for(int i=0;i<rows;i++)
{
for(int j=0;j<cols;j++)
{
if(haha(matrix,rows,cols,i, j,str,0,flag))
{
return true;
}
}
}
delete[] flag;
return false;
}
/*参数说明*/
bool haha(char* matrix,int rows,int cols,int i,int j,char* str,int k,bool* flag)
{
//因为是一维数组存放二维的值,index值就是相当于二维数组的(i,j)在一维数组的下标
int index = i * cols + j;
//flag[index]==true,说明被访问过了,那么也返回true;
if(i<0 || i>=rows || j<0 || j>=cols || matrix[index]!=str[k] || flag[index]==true)
return false;
//字符串已经查找结束,说明找到该路径了
if(str[k+1]=='\0') return true;
//向四个方向进行递归查找,向左,向右,向上,向下查找
flag[index] = true;//标记访问过
if( haha(matrix, rows, cols, i - 1, j, str, k + 1, flag)
||haha(matrix, rows, cols, i + 1, j, str, k + 1, flag)
||haha(matrix, rows, cols, i, j - 1, str, k + 1, flag)
||haha(matrix, rows, cols, i, j + 1, str, k + 1, flag))
{
return true;
}
flag[index] = false;
return false;
}
};