密度聚类_DBscan

33 篇文章 0 订阅
24 篇文章 0 订阅

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import DBSCAN
from sklearn.cluster import KMeans
def draw_pic(data,result):
    plt.rcParams['font.sans-serif']=['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    markers=['or','og','ob','ok','oy','om']
    for i,d in enumerate(data):
        plt.plot(d[0],d[1],markers[result[i]])
    plt.title('鸢尾花')
    plt.show()

def example():
    print ("----------ing-------------")
    choose = 1
    if choose == 0:
        iris_data = load_iris()
        data= iris_data.data[:]
    else:
        data = np.genfromtxt("kmeans.txt",delimiter=" ")
    model = DBSCAN(eps=1.5,min_samples=4)
    model.fit(data)


    result = model.fit_predict(data)
    print("result:",result)
    print("model_labels:",model.labels_)
    draw_pic(data,result)
    print ("----------end-------------")


def example1():
    print ("----------ing-------------")
    x1,y1 =datasets.make_circles(n_samples=2000,factor = 0.5,noise = 0.05)
    x2,y2 =datasets.make_blobs(n_samples=1000,centers=[[1.3,1.1]],cluster_std=[[.1]])
    x=np.concatenate((x1,x2))
    
    plt.scatter(x[:,0],x[:,1],marker='o')
    plt.show()

    y_ = KMeans(3).fit_predict(x)
    plt.scatter(x[:,0],x[:,1],c=y_)
    plt.show()
    
    #y_ = DBSCAN(eps=0.2,min_samples=50).fit_predict(x)
    y_ = DBSCAN(eps=0.15).fit_predict(x)
    plt.scatter(x[:,0],x[:,1],c=y_)
    plt.show()

    print ("----------end-------------")
    
def main():
    example()
    example1()
    
main()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佐倉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值