光流估计

在这里插入图片描述

在这里插入图片描述

# -*- coding:utf-8 -*-
import cv2
import numpy as np

def video_operate():
    capture = cv2.VideoCapture("test.avi")
    feature_param  = dict(maxCorners =100,qualityLevel = 0.3,minDistance= 7)
    lk_param = dict(winSize=(15,15),maxLevel=2)
    color_ = np.random.randint(0,255,(100,3))
    ret,old_frame = capture.read()
    old_gray =cv2.cvtColor(old_frame,cv2.COLOR_BGR2GRAY)
    p0 = cv2.goodFeaturesToTrack(old_gray,mask=None,**feature_param)
    mask = np.zeros_like(old_frame)

    while True:
        ret,frame = capture.read()
        frame_gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        p1,st,err = cv2.calcOpticalFlowPyrLK(old_gray,frame_gray,p0,None,**lk_param)
        good_new = p1[st==1]
        good_old = p0[st==1]
        for i,(new,old) in enumerate(zip(good_new,good_old)):
            a,b = new.ravel()
            c,d = old.ravel()
            mask = cv2.line(mask,(a,b),(c,d),color_[i].tolist(),2)
            frame = cv2.circle(frame,(a,b),5,color_[i].tolist(),-1)

        img = cv2.add(frame,mask)
        cv2.imshow('frame',img)
        key = cv2.waitKey(150) & 0xFF
        if key == 27:
            break
        old_gray = frame_gray.copy()
        p0= good_new.reshape(-1,1,2)

    capture.release()
    cv2.destroyAllWindows()
def main():
    video_operate()
if __name__  == "__main__":
    main()

在这里插入图片描述

Matlab中的光流估计算法是一种用于计算图像序列中每一帧之间的像素级位移的方法。该算法基于一种称为光流的现象:由于相邻帧之间物体的移动,每个像素的亮度值也会随之变化。 光流估计算法常用于计算机视觉领域,例如目标跟踪、人类动作分析和自动驾驶等任务。在Matlab中,有许多基于不同原理的光流估计算法可供选择,包括亮度差异、亮度一致性和相关性等方法。 实现光流估计的过程通常由以下几个步骤组成: 1. 读取输入视频序列或图像序列,并将其转换为灰度图像。 2. 选择合适的光流估计算法。根据应用需求和计算资源的限制,可以选择基于亮度差异或相关性的方法。 3. 使用所选算法计算每个像素的位移矢量。这些位移矢量表示了物体在相邻帧之间的运动。 4. 将位移矢量可视化,例如通过在输入图像上绘制箭头来表示物体的运动方向和速度。 5. 根据具体需求对位移矢量进行进一步处理,例如目标跟踪或动作分析。 使用Matlab进行光流估计的优势之一是它提供了多种内置函数和工具箱来简化算法的实现和评估。此外,Matlab还提供了一些函数用于数据预处理和结果可视化,使得光流估计的实验和分析更加方便。 总而言之,Matlab中的光流估计算法是一种用于计算图像序列中物体像素级位移的方法。通过选择合适的算法和使用Matlab的工具和函数,我们可以实现光流估计,并应用于各种计算机视觉任务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佐倉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值