304. 二维区域和检索 - 矩阵不可变
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。
Range Sum Query 2D
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:
给定 matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
]
sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
- 状态:设定一个dp[i][j]表示以这个方块为右下角的矩内元素之和。也类似于下面的动态转移方程
- 初始化:每一个dp[i][j]方块内的矩阵和等于其减去上方和左方的面积后,再加上左对角的面积。
状态转移方程:
d p [ i ] [ j ] = d p [ i ] [ j ] − d p [ i − 1 ] [ j ] − d p [ i ] [ j − 1 ] + d p [ i − 1 ] [ j − 1 ] dp[i][j]=dp[i][j]-dp[i-1][j]-dp[i][j-1]+dp[i-1][j-1] dp[i][j]=dp[i][j]−dp[i−1][j]−dp[i][j−1]+dp[i−1][j−1]
class NumMatrix:
def __init__(self, matrix: List[List[int]]):
if not matrix:
self.dp = []
return
m, n = len(matrix), len(matrix[0])
self.dp = [[0]*(n+1) for _ in range(m+1)]
for i in range(1,m+1):#init
for j in range(1,n+1):
self.dp[i][j]=matrix[i-1][j-1]
for i in range(1,m+1):
for j in range(1,n+1):
self.dp[i][j] += self.dp[i][j-1] + self.dp[i-1][j]-self.dp[i-1][j-1]
print(self.dp)
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int:
return self.dp[row2+1][col2+1]-self.dp[row1][col2+1]-self.dp[row2+1][col1]+self.dp[row1][col1] if self.dp != [] else 0
# Your NumMatrix object will be instantiated and called as such:
# obj = NumMatrix(matrix)
# param_1 = obj.sumRegion(row1,col1,row2,col2)