在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1] 3 / \ 2 3 \ \ 3 1 输出: 7 解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
示例 2:
输入: [3,4,5,1,3,null,1] 3 / \ 4 5 / \ \ 1 3 1 输出: 9 解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int rob(TreeNode* root) {
vector<int>dp(2,0);
dp=tryrob(root);
return max(dp[0],dp[1]);
}
private:
vector<int> tryrob(TreeNode* u){
if(u==NULL)
return vector<int>(2,0);
vector<int> L=tryrob(u->left);
vector<int> R=tryrob(u->right);
vector<int>res(2,0);
res[0]=max(L[0],L[1])+max(R[0],R[1]);
res[1]=u->val+L[0]+R[0];
return res;
}
};
代码解释:
对于树中每个节点有两种选择,选择或不选择
定义函数tryRob(TreeNode *u),其返回值为(dp[0],dp[1]),二元元组
dp[0]表示不选择u节点后u子树能够得到的最大值;
//dp[0]=max(leftChild_dp[0],left_Child_dp[1])+max(RChild_dp[0],R_Child_dp[1])
// dp[1]表示选择u节点后u子树能够得到的最大值
那么原题就可以转化为tryRob(TreeNode *root),即选择root或不选择root节点子树能够获得的最大值。
要求解该过程需要dfs,因为对于以叶子节点为根节点的树的最大值是可以求出来的
(即max(不选择叶子节点(空树),选择叶子节点所获得的最大价值中的最大值),
然后通过回溯求出以root为根节点的最大价值。
令
f
[
u
]
[
0
]
f[u][0]
f[u][0]表示不选取u节点后u子树所能够得到的最大价值
令
f
[
u
]
[
1
]
f[u][1]
f[u][1]表示选取u节点后u子树所能够得到的最大价值
f
[
u
]
[
0
]
=
∑
v
∈
u
.
a
l
l
_
c
h
i
l
d
r
e
n
max
(
f
[
v
]
[
0
]
,
f
[
v
]
[
1
]
)
f[u][0]=\sum_{v\in u.all\_children}\max(f[v][0],f[v][1])
f[u][0]=v∈u.all_children∑max(f[v][0],f[v][1])
f
[
u
]
[
1
]
=
a
[
i
]
+
∑
v
∈
u
.
a
l
l
_
c
h
i
l
d
r
e
n
f
[
v
]
[
0
]
f[u][1]=a[i]+\sum_{v\in u.all\_children}f[v][0]
f[u][1]=a[i]+v∈u.all_children∑f[v][0]
以u为根节点所能够获得的最大价值 伪代码
void dfs(int u){
f[u][0]=0;
f[u][1]=a[u]
for(int v:e[u])
{
dfs(v);
f[u][0]+=max(f[v][0],f[v][1]);
f[u][1]+=f[v][0];
}
}
时间复杂度为O(n),每个节点访问一次。
利用python 求解dfs 时间超限
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def rob(self, root: TreeNode) -> int:
if not root:
return 0
# 方案1 ,偷取当前节点
value1=root.val
if root.left :
value1+=self.rob(root.left.left)+self.rob(root.left.right)
if root.right:
value1+=self.rob(root.right.left)+self.rob(root.right.right)
# 方案2 ,不偷取当前节点
value2=self.rob(root.left)+self.rob(root.right);
return max(value1,value2)
利用备忘录python优化算法
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def rob(self, root: TreeNode) -> int:
memo=dict()
return self._rob(root,"",memo)
def _rob(self,root,path,mem):
if not root:
return 0
if path in mem:
return mem[path]
# 方案1 ,偷取当前节点
value1=root.val
if root.left :
value1+=self._rob(root.left.left,path+"ll",mem)+self._rob(root.left.right,path+"lr",mem)
if root.right:
value1+=self._rob(root.right.left,path+"rl",mem)+self._rob(root.right.right,path+"rr",mem)
# 方案2 ,不偷取当前节点
value2=self._rob(root.left,path+"l",mem)+self._rob(root.right,path+"r",mem);
mem[path]=max(value1,value2)
return mem[path]