337. 打家劫舍 III

在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。

计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。

示例 1:

输入: [3,2,3,null,3,null,1]

     3
    / \
   2   3
    \   \ 
     3   1

输出: 7 
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.

示例 2:

输入: [3,4,5,1,3,null,1]

     3
    / \
   4   5
  / \   \ 
 1   3   1

输出: 9
解释: 小偷一晚能够盗取的最高金额 = 4 + 5 = 9.
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int>dp(2,0);
        dp=tryrob(root);
        return max(dp[0],dp[1]);
    }
    private:
    vector<int> tryrob(TreeNode* u){
        if(u==NULL)
            return vector<int>(2,0);
        vector<int> L=tryrob(u->left);
        vector<int> R=tryrob(u->right);
        vector<int>res(2,0);
        res[0]=max(L[0],L[1])+max(R[0],R[1]);
        res[1]=u->val+L[0]+R[0];
        return res;
        
    }
};
代码解释:
对于树中每个节点有两种选择,选择或不选择
定义函数tryRob(TreeNode *u),其返回值为(dp[0],dp[1]),二元元组
 dp[0]表示不选择u节点后u子树能够得到的最大值;
    //dp[0]=max(leftChild_dp[0],left_Child_dp[1])+max(RChild_dp[0],R_Child_dp[1])
// dp[1]表示选择u节点后u子树能够得到的最大值 
那么原题就可以转化为tryRob(TreeNode *root),即选择root或不选择root节点子树能够获得的最大值。
要求解该过程需要dfs,因为对于以叶子节点为根节点的树的最大值是可以求出来的
(即max(不选择叶子节点(空树),选择叶子节点所获得的最大价值中的最大值),
然后通过回溯求出以root为根节点的最大价值。

f [ u ] [ 0 ] f[u][0] f[u][0]表示不选取u节点后u子树所能够得到的最大价值
f [ u ] [ 1 ] f[u][1] f[u][1]表示选取u节点后u子树所能够得到的最大价值
f [ u ] [ 0 ] = ∑ v ∈ u . a l l _ c h i l d r e n max ⁡ ( f [ v ] [ 0 ] , f [ v ] [ 1 ] ) f[u][0]=\sum_{v\in u.all\_children}\max(f[v][0],f[v][1]) f[u][0]=vu.all_childrenmax(f[v][0],f[v][1])
f [ u ] [ 1 ] = a [ i ] + ∑ v ∈ u . a l l _ c h i l d r e n f [ v ] [ 0 ] f[u][1]=a[i]+\sum_{v\in u.all\_children}f[v][0] f[u][1]=a[i]+vu.all_childrenf[v][0]

以u为根节点所能够获得的最大价值 伪代码
void dfs(int u){
    f[u][0]=0;
    f[u][1]=a[u]
    for(int v:e[u])
    {
        dfs(v);
        f[u][0]+=max(f[v][0],f[v][1]);
        f[u][1]+=f[v][0];
    }
}

时间复杂度为O(n),每个节点访问一次。

利用python 求解dfs 时间超限
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def rob(self, root: TreeNode) -> int:
     
        if not root:
            return 0
#         方案1 ,偷取当前节点
        value1=root.val
        if  root.left :
            value1+=self.rob(root.left.left)+self.rob(root.left.right)
        if  root.right:
            value1+=self.rob(root.right.left)+self.rob(root.right.right)
#         方案2 ,不偷取当前节点
        value2=self.rob(root.left)+self.rob(root.right);
    
        return max(value1,value2)
利用备忘录python优化算法
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def rob(self, root: TreeNode) -> int:
        memo=dict()
        return self._rob(root,"",memo)
        
        
    def _rob(self,root,path,mem):
        if not root:
            return 0
        if path in mem:
            return mem[path]
    #         方案1 ,偷取当前节点
        value1=root.val
        if  root.left :
            value1+=self._rob(root.left.left,path+"ll",mem)+self._rob(root.left.right,path+"lr",mem)
        if  root.right:
            value1+=self._rob(root.right.left,path+"rl",mem)+self._rob(root.right.right,path+"rr",mem)
    #         方案2 ,不偷取当前节点
        value2=self._rob(root.left,path+"l",mem)+self._rob(root.right,path+"r",mem);
        mem[path]=max(value1,value2)
    
        return mem[path]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值