高级算法设计之 -- Derandomized MAXCUT Approximation

笔记来源:高级算法设计(孙晓明老师部分)
本文参考:http://people.seas.harvard.edu/~salil/pseudorandomness/basic.pdf

关于条件期望用于去随机化的原理https://blog.csdn.net/qq_38662930/article/details/105141845

最大割

定义将图的顶点分为两个集合,使得集合间的边数最大
形式化定义:
在这里插入图片描述
在这里插入图片描述
设最优的割划分为 O P T OPT OPT,随机算法求出的一个割为 δ ( U ) \delta(U) δ(U)定义其比值 为 δ ( U ) O P T \frac{\delta(U)}{OPT} OPTδ(U),比值越接近1越好 。通过随机 算法可以找到一个之割,其期望割边至少是边数的二分之一。

主要思想是:对于每一个顶点以掷硬币的方式决定其是否属于所求的割。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
证明:分为两个集合S和T, ∀ ( u i , v j ) ∈ E 当 u i ∈ S , v j ∈ T , 或 u i ∈ T , v j ∈ S 时 即 p r ( x i ≠ x j ) , 则 u i , v j 在 对 应 的 割 中 P r { ( u i , v j ) ∈ E ( S , T ) } = 1 / 4 + 1 / 4 = 1 / 2 , 此 时 E { δ ( U ) } = E 2 \forall (u_i,v_j) \in E \\ 当u_i \in S,v_j \in T,或u_i \in T,v_j \in S时\\ 即pr(x_i\ne x_j) ,则u_i,v_j 在对应的割 中\\ Pr\{(u_i,v_j)\in E(S,T)\}=1/4+1/4=1/2,\\此时E\{\delta(U) \}=\frac{E}{2} (ui,vj)EuiS,vjTuiT,vjSpr(xi=xj),ui,vjPr{(ui,vj)E(S,T)}=1/4+1/4=1/2E{δ(U)}=2E,
当不再是硬币选择是(例如1/3,则结果可以是5/9),概率变会提高,因此最小是1/2

利用条件期望去随机化

在这里插入图片描述
主要思想:利用逐次固定变量的优化方法,先通过期望找到一个好的然后利用条件期望去随机化。
如上图所示,我们己经求出 E ( ∣ E ( A , B ) ∣ ) E(|E(A,B)|) E(E(A,B))的期望,然后利用全概率公式展开成关于 Z 1 ( 表 示 第 一 个 顶 点 是 否 进 入 所 求 割 ) Z_1(表示第一个顶点是否进入所求割) Z1()的条件概率期望,我们总能求出关于 E ( Y ∣ Z 1 = 1 ) E(Y|Z_1=1) E(YZ1=1) E ( Y ∣ Z 1 = 0 ) E(Y|Z_1=0) E(YZ1=0)的大小关系,然后向上放大。接下来我们再求出关于$Z_1 的 最 优 解 , 然 后 再 对 的最优解,然后再对 X_2 $进行展开和放大,直到所有的顶点全部展开.

在这里插入图片描述
从而求得一个可行割 ∣ E ( A , B ) ∣ = E ( Y ∣ u 1 ∈ A , u 2 ∈ B . . . ) ≥ E ( ∣ E ( A , B ) ∣ ) |E(A,B)|=E(Y|u_1\in A,u_2\in B...)\geq E(|E(A,B)|) EA,B=EYu1A,u2B...E(E(A,B))

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值