RT-DETR算法改进损失函数WIoU:结合最新WIoU损失函数,超越CIoU, SIoU性能,涨点神器|目标检测的新损失

本文介绍了如何在RT-DETR算法中使用Wise-IoU损失函数进行改进,以提升目标检测性能。通过逐步替换CIoU损失并新增相关函数,实现了代码实践,详细解释了每个改进步骤,并提供了网络配置信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡本篇内容:RT-DETR算法改进:更换损失函数Wise-IoU损失函数

💡本博客 改进源代码改进 适用于 RT-DETR目标检测算法(ultralytics项目版本)

按步骤操作运行改进后的代码即可🚀🚀🚀

💡改进 RT-DETR 目标检测算法专属|芒果专栏

一、Wise-IoU理论部分 + 最新 RT-DETR算法 代码实践改进

在这里插入图片描述

RT-DETR模型架构图显示了骨干网络的最后三个阶段{S3,S4,S5}作为编码器的输入。高效的混合编码器通过尺度内特征交互(AIFI)和跨尺度特征融合模块(CCFM)将多尺度特征转换为图像特征序列。IoU 感知查询选择用于选择固定数量的图像特征作为解码器的初始对象查询。最后,具有辅助预测头的解码器迭代优化对象查询以生成框和置信度分数。

Wise-IoU 损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值