全新芒果YOLOv8改进专栏 | 专栏目录:目前已有170+篇内容,内含各种Head检测头、标签分配策略、损失函数Loss、Backbone、Neck、写作|指标、NMS等全方位创新点改进

这是一个深入探讨YOLOv8改进的专栏,涵盖标签分配策略、检测头、IoU和分类损失函数、Backbone、Neck、NMS等各方面的创新,提供170+篇详细内容,并附带答疑服务和免费的哔哩哔哩视频教程配套代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内含各种Head检测头、标签分配策略、损失函数Loss、Backbone、Neck、写作|指标、NMS等全方位创新点改进

改进YOLOv8专栏《芒果YOLOv8原创改进》,只需要订阅这一个就可以查看所有的YOLOv8改进。

全新芒果YOLOv8改进专栏来袭: 专栏地址👉 芒果YOLOv8改进专栏,内含170+篇内容

目前已有 170+ 篇,其中包括《head检测头、《标签分配策略》、《损失函数Loss》、《Backbone》、《Neck》、《写作|指标》、《NMS》等全方位创新点改进

重要🔥🔥🔥:同时订阅了《芒果YOLOv8原创改进》的小伙伴,可以私信博主,加入YOLOv8改进交流群,博主提供对应的答疑服务:QQ:2434798737

更多新内容持续更新中...  持续更新

文档教程+集成版项目配合使用

YOLOv8改进项目 ultralyticsPro项目 免费送:订阅了《芒果YOLOv8原创改进专栏》的读者免费赠送-包括很多稀有原创改进-YOLOv8改进哔哩哔哩视频教程配套代码

YOLOv8改进项目免费送:订阅了《芒果YOLOv8原创改进专栏》的读者免费赠送-包括很多稀有原创改进-YOLOv8改进哔哩哔哩视频教程配套代码icon-default.png?t=O83Ahttps://yoloair.blog.csdn.net/article/details/138704281


完整版专栏地址👉 芒果YOLOv8改进专栏icon-default.png?t=O83Ahttps://yoloair.blog.csdn.net/category_12356719.html

YOLOv8改进目录如下

  1. YOLOv8 标签分配策略 改进篇
  2. YOLOv8 检测头 Head/Detect 改进篇
  3. YOLOv8 IoU损失函数 改进篇
  4. YOLOv8 主干 Backbone 篇
  5. YOLOv8 特征融合 Neck 篇
  6. YOLOv8 NMS 改进篇
  7. YOLOv8 卷积 Conv 篇
  8. YOLOv8 指标/写作 篇

芒果YOLOv8改进哔哩哔哩视频教程

https://space.bilibili.com/1532780812icon-default.png?t=O83Ahttp://bilibili

专栏地址👉 芒果YOLOv8改进专栏

YOLOv8 标签分配策略 改进篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8标签分配策略无 NMS 训练的一致双重分配芒果YOLOv8改进171:无 NMS 训练的一致双重分配|即插即用,双标签分配策略改进
YOLOv8标签分配策略Dynamic ATSS动态标签分配策略芒果YOLOv8组合改进164:即插即用|Dynamic ATSS动态标签分配策略+新颖共享ShareSepHead检测头:改进全网唯一,通过结合预测 IoU 和锚 IoU 进行物体检测
YOLOv8标签分配策略👉 WDLA:Wasserstein Distance Label Assignment芒果YOLOv8改进25:动态标签分配策略篇之WDLA:最新改进Wasserstein Distance Label Assignment,用于小目标检测,提升小目标检测精度,芒果独家原创,全网独一份
YOLOv8标签分配策略👉 Nanodet 标签分配策略芒果YOLOv8改进66:动态标签分配策略篇之Nanodet:使用NanoDet动态标签分配策略,同时集成Generalized Focal Loss损失,进行模型轻量化,来打造新颖YOLOv8检测器
YOLOv8标签分配策略 👉 ATSS:Adaptive Training Sample Selection芒果YOLOv8改进72:动态标签分配策略篇之ATSS:自适应训练样本选择Adaptive Training Sample Selection策略
YOLOv8标签分配策略👉 NanodetNeXt && 改进VFL芒果YOLOv8改进86:动态标签分配策略篇之Nanodet:同时集成VFL全新损失,来打造新颖YOLOv8检测器
YOLOv8标签分配策略👉 RFLA标签分配芒果YOLOv8改进97:动态标签分配策略篇之RFLA标签分配:改进ECCV顶会,用于微小物体检测的基于高斯感受野的标签分配,并针对YOLOv8来进行适配优化,打造新颖YOLOv8模型
YOLOv8标签分配策略👉 持续更新ing持续更新ing
YOLOv8 检测头 Head/Detect 改进篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8检测头Head 篇ImplicitHead 隐性知识检测头芒果YOLOv8改进164:检测头篇:ImplicitHead 隐性知识检测头| 即插即用,独家新颖更新,精度高效涨点
YOLOv8检测头Head 篇Dynamic ATSS动态标签分配策略+DynamicHead检测头芒果YOLOv8组合改进163:即插即用|Dynamic ATSS动态标签分配策略+DynamicHead检测头:改进全网唯一,通过结合预测 IoU 和锚 IoU 进行物体检测
YOLOv8检测头Head 篇轻量化检测头篇:LiteShiftHead芒果YOLOv8改进142:轻量化检测头篇:LiteShiftHead | 即插即用,独家原创更新,大幅减少参数量,轻量化的同时精度高效涨点,全网独家首发
YOLOv8检测头Head 篇👉 轻量化非对称多级压缩LADH芒果YOLOv8改进16:检测头Head篇:即插即用|新颖轻量化非对称多级压缩LADH检测头,原创改进适配YOLOv8高效检测头,检测头新颖性改进,全网首发独一份
YOLOv8检测头Head 篇👉 新颖高效AsDDet检测头芒果YOLOv8改进17:检测头Head篇:即插即用|《新颖高效AsDDet检测头》独一无二的结构改进,公开数据集mAP高效涨点,即插即用|检测头新颖改进,性能高效涨点,全网首发独一份
YOLOv8检测头Head 篇👉 卷积CNN小目标检测头芒果YOLOv8改进21:检测头Head篇:即插即用|增加卷积CNN小目标检测头
YOLOv8检测头Head 篇👉 超多种Transformer小目标检测头芒果YOLOv8改进21-1:检测头Head篇:即插即用|超多种Transformer小目标检测头
YOLOv8检测头Head 篇👉 ShareSepHead芒果YOLOv8改进65:检测头篇ShareSepHead:即插即用|原创改进ShareSepHead新颖检测头升级版,更省参数量,更高效,打造新型YOLOv8检测器,精度高效涨点
YOLOv8检测头Head 篇👉 感知聚合SERDet检测头芒果YOLOv8改进88:检测头篇之感知聚合SERDet检测头:简单高效涨点,即插即用|检测头新颖改进,全网无重复 YOLOv8专属打造
YOLOv8检测头Head 篇👉 原创新颖共享Sep检测头芒果YOLOv8改进93:检测头篇之ShareSepHead:即插即用|原创新颖共享Sep检测头,更省参数量,更高效,打造新型YOLOv8检测器,精度高效涨点
YOLOv8检测头Head 篇👉 RepBiPAN结构 + DETRHead检测头芒果YOLOv8改进96:检测头篇之RepBiPAN结构 + DETRHead检测头,为YOLOv8目标检测使用不一样的检测头,用于提升检测精度
YOLOv8检测头Head 篇全新动态DynamicSatDetect芒果YOLOv8改进107:检测头篇DynamicHead动态检测头:基于DynamicHead,二次原创提出SATNeXt模块,提出全新的动态DynamicSatDetect
YOLOv8检测头Head 篇👉 持续更新ing持续更新ing
YOLOv8 IoU损失函数 改进篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8损失函数IoU 篇AngLoss(公开数据集涨点1%)芒果YOLOv8改进165:损失函数angleLoss:即插即用 | 独家首发原创新颖|公开数据集DOTA高效无损涨点0.5% | 旋转检测
YOLOv8损失函数IoU 篇👉 GWD Loss芒果YOLOv8改进48:损失函数IoU篇之GWD:即插即用 首发原创新颖|全网唯一更新GWDLoss改进博客,在Visdrone数据集上验证,基于高斯Wasserstein距离,提升YOLOv8小目
YOLOv8损失函数IoU 篇👉 KLD Loss芒果YOLOv8改进99:损失函数IoU篇之KLD Loss:即插即用 原创首发更新KLDLoss改进博客,通过 Kullback-Leibler 散度学习用于目标检测的高精度边界框,提升YOLOv8
YOLOv8损失函数IoU 篇👉 EfficiCLoss芒果YOLOv8改进02:损失函数IoU篇EfficiCLoss:首发最新改进|结合EfficiCLoss损失函数,小目标强势涨点
YOLOv8损失函数IoU 篇👉 XIoU芒果YOLOv8改进03:损失函数IoU篇全新XIoU:首发最新改进|结合XIoU损失函数,相比较CIoU改进涨点,YOLO改进Trick,提升网络模型性能、收敛速度和鲁棒性
YOLOv8损失函数IoU 篇👉 Repulsion Loss芒果YOLOv8改进11:损失函数IoU 篇:遮挡损失函数Repulsion Loss,全网独家首发最新改进| Repulsion 解决目标遮挡场景下的目标检测,为解决密集人群检测中遮挡设计的损失函数
YOLOv8损失函数IoU 篇原创损失函数FocalerXIoU,FocalerWIoU,FocalerPIoU,FocalerSIoU果YOLOv8改进144:Loss篇基于FocalerIoU的思想:独家提出FocalerXIoU,FocalerWIoU,FocalerPIoU,FocalerSIoU等等,针对小目标检测提点
YOLOv8损失函数IoU 篇原创损失函数FocalerNWD,FocalerEffiCIoU,FocalerMPDIoU芒果YOLOv8改进143:Loss篇基于FocalerIoU思想:独家提出FocalerNWD,FocalerEffiCIoU,FocalerMPDIoU等等,针对小目标检测提点
YOLOv8损失函数IoU 篇原创损失函数Focal-InnerNWD,Focal-InnerEffcicIoU,F-IPIoU芒果YOLOv8改进141:原创Loss篇基于Focal和Inner的思想:独家提出Focal-InnerNWD,Focal-InnerEffcicIoU,F-IPIoU等,提升YOLOv8检测性能
YOLOv8损失函数IoU 篇原创损失函数Focal-InnerXIoU,Focal-InnerWIoU,Focal-InnerPIoU芒果YOLOv8改进140:原创Loss篇基于Focal和Inner的思想:独家提出Focal-InnerXIoU,Focal-InnerWIoU,Focal-InnerPIoU等,针对小目标检测提点
YOLOv8损失函数IoU 篇原创损失函数InnerNWD,InnerEffIoU,InnerMPDIoU,InnerAIoU芒果YOLOv8改进139:Loss篇02基于InnerIoU思想:独家提出InneNWD,InnerEffIoU,InnerMPDIoU,InnerAIoU等等,针对小目标检测提点
YOLOv8损失函数IoU 篇原创损失函数InnerXIoU,InnerWIoU,InnerPIoU,InnerSIoU芒果YOLOv8改进138:Loss篇基于InnerIoU的思想:独家提出InnerXIoU,InnerWIoU,InnerPIoU,InnerSIoU等等,针对小目标检测提点
YOLOv8损失函数IoU 篇👉 SIoU损失函数、EIoU损失函数、GIoU损失函数、α-IoU损失函数芒果YOLOv8改进14:多种损失函数IoU 篇:YOLOv8涨点Trick,改进添加SIoU损失函数、EIoU损失函数、GIoU损失函数、α-IoU损失函数
YOLOv8损失函数IoU 篇👉 Focal-EIoU|Focal-SIoU|Focal-CIoU、GIoU芒果YOLOv8改进24:多种损失函数IoU篇:FocalLoss结合变种IoU套装:包含Focal-EIoU|Focal-SIoU|Focal-CIoU、GIoU等,YOLOv8 模型高效涨点
YOLOv8损失函数IoU 篇👉 Focal-CIoU芒果YOLOv8改进26:多种损失函数IoU篇:FocalLoss结合变种IoU套装:包含Focal-EIoU|Focal-SIoU|Focal-CIoU、GIoU等,YOLOv8 模型高效涨点
YOLOv8损失函数IoU 篇👉 Wise-IoU芒果YOLOv8改进28:损失函数IoU篇之Wise-IoU:最新YOLOv8结合最新WIoU损失函数,超越CIoU, SIoU性能,涨点神器|让YOLO模型高效涨点,目标检测的新损失
YOLOv8损失函数IoU 篇👉 NWDLoss芒果YOLOv8改进30:损失函数IoU篇之NWDLoss:即插即用|YOLOv8小目标检测高效涨点2%,改进用于小目标检测的归一化高斯 Wasserstein Distance Loss,提升小目标
YOLOv8损失函数IoU 篇👉 Focaler-(Any) IoU芒果YOLOv8改进49:损失函数IoU篇之Focaler-(Any) IoU:即插即用,最新 IoU论文,可支持XIoU、WIoU、SIoU、DIoU等基础上改进更加关注联合损失的交叉点,YOLO
YOLOv8损失函数IoU 篇👉 MPDIoU芒果YOLOv8改进71:损失函数IoU篇之MPDIoU:超越现有多种G/D/C/EIoU,高效准确的边界框回归的损失
YOLOv8损失函数IoU 篇👉 Inner-IoU芒果YOLOv8改进84:损失函数IoU篇之全新Inner-IoU损失函数:全网首发2023年11月最新论文扩展到其他SIoU、CIoU等主流损失函数,带辅助边界框的损失
YOLOv8损失函数IoU 篇👉 Shape-IoU芒果YOLOv8改进94:损失函数IoU篇之Shape-IoU:考虑边界框形状和比例的更准确的指标
YOLOv8损失函数IoU 篇👉 PIoU Loss芒果YOLOv8改进100:损失函数IoU篇之PIoU Loss:PIoU v2损失增强了专注于中等质量锚盒的能力,v1版本使用非单调聚焦机制更直接、更快的边界框回归损失
YOLOv8损失函数IoU 篇👉 持续更新ing持续更新ing
YOLOv8 分类损失函数 改进篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8分类损失函数👉 FocalLoss芒果YOLOv8改进61:分类损失函数Loss篇FocalLoss:即插即用|最新改进FocalLoss损失函数,提高处理不平衡数据分类场景下的任务性能,提升YOLOv8检测精度
YOLOv8分类损失函数👉 QualityFocal芒果YOLOv8改进62:分类损失函数Loss篇QualityFocal:即插即用|最新改进QualityFocal损失函数,学习更好的分类分数和定位质量的联合表示,提升YOLOv8检测精度
YOLOv8分类损失函数👉 VariFocalNet芒果YOLOv8改进63:分类损失函数Loss篇VariFocalNet:即插即用|最新改进VariFocal损失函数,全面提升密集场景下的目标检测,提升YOLOv8检测精度
YOLOv8分类损失函数👉 PolyLoss芒果YOLOv8改进64:分类损失函数Loss篇PolyLoss:即插即用|最新改进PolyLoss顶会论文ICLR,分类损失函数的多项式展开视角,提升YOLOv8检测精度
YOLOv8分类损失函数👉 持续更新ing持续更新ing
YOLOv8 主干 Backbone 篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8主干Backbone 篇👉 SwinV2TRX、SwinV2TRY、SwinV2TRXZ芒果YOLOv8改进105:主干Backbone篇:基于CVPR顶会论文的SwinV2核心结构,提出独家原创SwinV2TRX、SwinV2TRY、SwinV2TRXZ等新结构
YOLOv8主干Backbone 篇👉 CFNet芒果YOLOv8改进07:主干Backbone篇:最新论文CFNet,即插即用|原创改进结构显著提升检测性能,小目标检测涨点必备(二)
YOLOv8主干Backbone 篇👉 Swin Transformer V2芒果YOLOv8改进08:主干Backbone篇Swin Transformer V2升级版本:即插即用|在基础SwinTransformer v2 结构的基础上进行多种改进结构, 强大的视觉主干
YOLOv8主干Backbone 篇👉 CBiF、BiFB芒果YOLOv8改进09:主干Backbone篇:最新结构CBiF、BiFB,小目标检测涨点,原创即插即用
YOLOv8主干Backbone 篇👉 FasterNeXt芒果YOLOv8改进15:主干Backbone篇:独创结构FasterNeXt,超10个数据集上已涨点,可直接写模型改进,源于最新CVPR2023主干系列FasterNet
YOLOv8主干Backbone 篇👉 GhostNet芒果YOLOv8改进18:主干Backbone篇GhostNet:原创改进高效 GhostNet 网络,华为出品,打造全新检测器
YOLOv8主干Backbone 篇👉 BiFormer芒果YOLOv8改进20:主干Backbone篇BiFormer:顶会CVPR2023即插即用,小目标检测涨点必备,首发原创改进,基于动态查询感知的稀疏注意力机制、构建高效金字塔网络架构
YOLOv8主干Backbone 篇👉 EfficientRep芒果YOLOv8改进22:主干Backbone篇EfficientRep结构:最新论文出品|结合设计硬件感知神经网络设计的高效 Repvgg的ConvNet 网络结构 ,该网络涨点利器
YOLOv8主干Backbone 篇👉 CReToNeXt芒果YOLOv8改进23:主干Backbone篇DAMOYOLO结构:最新改进提出 CReToNeXt 结构,基于阿里达摩院出品的DAMOYOLO核心网络模型进行改进,打造高性能检测器
YOLOv8主干Backbone 篇👉 QARepNeXt芒果YOLOv8改进27:主干Backbone篇QARepNeXt结构:最新原创提出改进 QARepNeXt 结构,基于最新 QARepVGG 结构,美团提出的一种量化感知方法:再一次让 RepVGG
YOLOv8主干Backbone 篇👉 MAE:ConvNeXtv2芒果YOLOv8改进29:主干Backbone篇之MAE结构:当MAE遇见卷积操作,最新原创 ConvNeXtv2 升级版,高效涨点,使用 Masked Autoencoders 共同设计和缩放
YOLOv8主干Backbone 篇👉 MobileViTv2芒果YOLOv8改进31:主干Backbone篇之MobileViTv2:全网首发最新苹果续作加强版 MobileViTv2结构(二),提出移动视觉 Transformer 的可分离自注意力机制,高效
YOLOv8主干Backbone 篇👉 MobileViTv3芒果YOLOv8改进32:主干Backbone篇之MobileViTv3:全网首发最新 MobileViTv3 系列最强改进版本(三)|轻量化Transformer视觉转换器,简单有效地融合了本地全局
YOLOv8主干Backbone 篇👉 RepLKNet芒果YOLOv8改进34:主干Backbone篇之RepLKNet:首发结合 RepLKNet 构建 最新 RepLKDeXt 结构|CVPR2022 超大卷积核, 越大越暴力,大到31x31, 涨点
YOLOv8主干Backbone 篇👉 InceptionNeXt芒果YOLOv8改进35:主干Backbone篇之InceptionNeXt:当 Inception 遇到 ConvNeXt 系列,即插即用,小目标检测涨点必备改进
YOLOv8主干Backbone 篇👉 Conv2Former芒果YOLOv8改进36:主干Backbone篇之Conv2Former:原创结合Conv2Formers改进结构,Transformer 风格的卷积网络视觉基线模型,超越ConvNeXt结构
YOLOv8主干Backbone 篇👉 DenseNet芒果YOLOv8改进37:主干Backbone篇之DenseNet:设计核心最新提出DenseOne密集网络,从另一个视角改进YOLO目标检测模型,打造高性能检测器
YOLOv8主干Backbone 篇👉 RepGhostNeXt芒果YOLOv8改进38:主干Backbone篇之RepGhostNeXt:基于重参数化结构,实现硬件高效的RepGhost 模块、打造全新YOLOv8检测器
YOLOv8主干Backbone 篇👉 PPHGNetv2芒果YOLOv8改进39:主干Backbone篇之PPHGNetv2:全网首发,目标检测新范式骨干PPHGNetv2,百度出品,提升YOLOv8检测能力
YOLOv8主干Backbone 篇👉 LEF芒果YOLOv8改进40:主干Backbone篇之LEF::黑夜小目标检测,ICANN会议出品,原创LEF模块,增强图像增强组成
YOLOv8主干Backbone 篇👉 MobileViT芒果YOLOv8改进42:主干Backbone篇之MobileViT::结合最新 ICLR2022 顶会轻量通用的MobileViT结构(一)Transformer,轻量级、通用且移动友好的视觉转换
YOLOv8主干Backbone 篇👉 PvT Transformer芒果YOLOv8改进50:主干Backbone篇之PvT核心网络::首发改进ICCV顶会,特征金字塔在Vision Transormer的首次应用,又快又好
YOLOv8主干Backbone 篇👉 GhostNetV2芒果YOLOv8改进52:主干Backbone篇之GhostNetV2:提出原创GhostNetV2 架构升级版:引入长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干,打造高效轻量级检测器
YOLOv8主干Backbone 篇👉 EfficientNet芒果YOLOv8改进67:主干Backbone篇EfficientNet:重新思考卷积神经网络的模型扩展,YOLO系列高效涨点
YOLOv8主干Backbone 篇👉 EfficientNetV2芒果YOLOv8改进68:主干Backbone篇EfficientNetV2升级版:并对EfficientNetV2进行原创网络结构的改进,更小的模型和更快的训练,模型高效提升
YOLOv8主干Backbone 篇👉 EMO芒果YOLOv8改进69:主干Backbone篇最新EMO结构:顶会ICCV2023|原创改进 Attention 重新思考移动端小模型中的基本模块,YOLO系列高效涨点
YOLOv8主干Backbone 篇👉 LSKNet芒果YOLOv8改进70:主干Backbone篇LSKNet:最新ICCV2023顶会|大选择性卷积核的领域首次探索,改进遥感旋转目标检测SOTA
YOLOv8主干Backbone 篇👉 RCS-OSA芒果YOLOv8改进73:主干Backbone篇RCS-OSA结构:改进新颖的YOLO架构,基于通道Shuffle的重参数化卷积,将特征级联和计算效率相结合,以提取更丰富的信息并减少时间消耗
YOLOv8主干Backbone 篇👉 RepVIT芒果YOLOv8改进74:主干Backbone篇RepVIT结构:最新重参数化结构 顶会2023 二次改进升级版,最新开源移动端网络架构,速度贼快
YOLOv8主干Backbone 篇👉 D-LKA芒果YOLOv8改进75:主干Backbone篇D-LKA结构:D-LKA结构的基础上进行多种改进结构,同时拥有Attention和大卷积核的能力,高效改进
YOLOv8主干Backbone 篇👉 Swin Transformer芒果YOLOv8改进76:主干Backbone篇Swin Transformer:在基础SwinTransformer结构的基础上进行多种改进结构,集成Transformer和CNN的优势
YOLOv8主干Backbone 篇👉 RepVGG芒果YOLOv8改进80:主干Backbone篇RepVGG结构:简单但功能强大的卷积神经网络架构
YOLOv8主干Backbone 篇👉 MSBlock芒果YOLOv8改进83:主干Backbone篇之MSBlock:即插即用集成YOLO-MS论文SOTA核心结构,原汁原味YOLOv8改进升级版,打破性能瓶颈
YOLOv8主干Backbone 篇👉 UniRepLKNet芒果YOLOv8改进87:主干Backbone篇之UniRepLKNet:极简高效,UniRepLKNet作为改进升级版RepLKNet(博客内附源代码),适用于图像识别,即插即用打破性能瓶颈
YOLOv8主干Backbone 篇👉 Generalized ELAN芒果YOLOv8改进101:主干Backbone篇之Generalized ELAN核心结构:并进行适应性缩放大小,广义的高效层聚合网络GELAN,同时考虑该网络考虑了轻量级、推理速度
YOLOv8主干Backbone 篇👉 持续更新ing持续更新ing
YOLOv8 特征融合 Neck 篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8Neck 篇👉 RepNCSPFPN芒果YOLOv8改进102:特征融合Neck篇之RepNCSPFPN特征融合和金字塔结构【二】 :广义的高效层聚合融合网络GELAN,考虑该网络考虑了轻量级、推理速度
YOLOv8Neck 篇👉 RepFPN结构芒果YOLOv8改进05:Neck篇:RepFPN结构,最新论文设计,具有硬件感知神经网络设计高效 Repvgg 式 ConvNet 网络结构
YOLOv8Neck 篇👉 BiFPN芒果YOLOv8改进10:特征融合Neck篇:改进特征融合网络 BiFPN 结构,融合更多有效特征
YOLOv8Neck 篇👉 GhostSlimFPN芒果YOLOv8改进13:特征融合Neck篇:结合新颖的GhostSlimFPN范式网络结构,进一步提升性能
YOLOv8Neck 篇👉 AFPN芒果YOLOv8改进19:特征融合Neck篇AFPN结构:改进用于目标检测的渐近特征金字塔网络AsymptoticFPN,加强非相邻层的直接交互,YOLO系列高效涨点
YOLOv8Neck 篇👉 EffQAFPN芒果YOLOv8改进33:特征融合Neck篇:原创设计EffQAFPN 结构,具有量化感知神经网络设计的高效网络结构 ,该网络结构表现强势
YOLOv8Neck 篇👉 Gather-and-Distribute机制芒果YOLOv8改进78:特征融合Neck篇之新颖Gather-and-Distribute机制:低阶高阶新颖融合,增强了多尺度特征融合能力,实现了延迟和准确性的理想平衡
YOLOv8Neck 篇👉 RepBiPAN芒果YOLOv8改进79:特征融合Neck篇之RepBiPAN 结构独家版Neck:该网络结构独一无二,为目标检测打造全新融合网络,增强定位信号,对于小目标检测的定位具有重要意义
YOLOv8Neck 篇👉 Lowlevel Feature Alignment机制芒果YOLOv8改进81:特征融合Neck篇之Lowlevel Feature Alignment机制:集特征对齐、信息融合和信息注入于一体,增强模型对不同尺寸物体的检测能力
YOLOv8Neck 篇👉 HFAMPAN芒果YOLOv8改进82:特征融合Neck篇之原创 HFAMPAN 结构:信息高阶特征对齐融合和注入,全局融合多级特征,将全局信息注入更高级别
YOLOv8Neck 篇👉 Scale-sequence-feature-fusion芒果YOLOv8改进89:特征融合Neck篇之Scale-sequence-feature-fusion 结构:新颖尺度序列特征融合结构,有效地利用所有金字塔特征图之间的相关性,即插即用提升精度性能
YOLOv8Neck 篇👉 RepBiSF芒果YOLOv8改进95:特征融合Neck篇之RepBiSF全新序列融合结构RepBiPAN + SSFF:深度创新,该网络结构独一无二,为目标检测打造全新融合网络,对于小目标检测的定位具有重要意义
YOLOv8Neck 篇👉 持续更新ing持续更新ing
YOLOv8 NMS 改进篇
模型🏆改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8NMS 篇👉 EfficiCLNMS芒果YOLOv8改进01:NMS 篇:独家首发最新原创EfficiCLNMS改进点,改进有效可以直接当做自己的原创改进点来写
YOLOv8NMS 篇👉 SIoU-NMS,EIoU-NMS芒果YOLOv8改进04:损失函数NMS篇:原创改进创新点 SIoU-NMS,EIoU-NMS,DIoU-NMS,CIoU-NMS,GIoU-NMS改进
YOLOv8NMS 篇👉 DIoU-NMS,CIoU-NMS,GIoU-NMS芒果YOLOv8改进04-1:损失函数NMS篇:原创改进创新点 SIoU-NMS,EIoU-NMS,DIoU-NMS,CIoU-NMS,GIoU-NMS改进
YOLOv8NMS 篇👉 XIoU_NMS芒果YOLOv8改进12:NMS篇:独家首发最新原创XIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能、收敛速度和鲁棒性
YOLOv8NMS 篇👉 WIoU_NMS芒果YOLOv8改进41:NMS篇:独家首发最新原创WIoU_NMS改进点,改进有效可以直接当做自己的原创改进点来写,提升网络模型性能精度
YOLOv8NMS 篇👉 持续更新ing持续更新ing
YOLOv8 卷积 Conv 篇
🏆模型改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8卷积 篇👉 PWConv芒果YOLOv8改进06:卷积Conv篇:独家原创改进最新PWConv核心结构,来自CVPR2023,可以直接写模型改进,进一步轻量化!测试数据集mAP有效涨点,进一步降低参数量
YOLOv8卷积 篇👉 DO-DConv芒果YOLOv8改进106:卷积Conv篇:DO-DConv卷积提高性能涨点,使用over-parameterized卷积层提高CNN性能
YOLOv8卷积 篇👉 Shift-ConvNets芒果YOLOv8改进98:主干Backbone篇之Shift-ConvNets:24年最新论文Shift-ConvNets:稀疏/移位操作让小卷积核也能达到大卷积核效果,来打造新颖YOLOv8检测器
YOLOv8卷积 篇👉 DCNv2芒果YOLOv8改进103:主干Backbone篇之DCNv1、DCNv2结构:可变形卷积网络Deformable Convolutional Networks,以及改进的深度和跨网络以及网络规模学习
YOLOv8卷积 篇👉 DCNv3芒果YOLOv8改进104:主干Backbone篇之DCNv3结构:即插即用|使用pytorch代码实现,并针对YOLOv8专门优化模块
YOLOv8卷积 篇👉持续更新ing持续更新ing
YOLOv8 指标/写作 篇
🏆模型改进类型🥇具体创新点🚀🎈改进文章链接👇
YOLOv8指标/写作 篇👉 从零开始训练YOLOv8芒果YOLOv8改进55:提升篇:手把手从零开始训练YOLOv8改进项目(官方ultralytics版本)教程
YOLOv8指标/写作 篇👉 从零开始训练 YOLOv8最新8.1版本芒果YOLOv8改进56:提升篇:从零开始训练 YOLOv8最新8.1版本教程说明(包含Mac、Windows、Linux端 )同之前的项目版本代码有区别
YOLOv8指标/写作 篇👉 打印FPS指标芒果YOLOv8改进43:写作篇:一文了解YOLOv8如何打印FPS指标
YOLOv8指标/写作 篇👉 超参数搜索芒果YOLOv8改进44:训练调优篇:一文了解YOLOv8进化超参数:《超参数搜索调优解析》训练教程(附训练代码)
YOLOv8指标/写作 篇👉 加载预训练权重芒果YOLOv8改进45:训练调优篇:一文了解YOLOv8使用自定义改进后的模型同时《加载官方预训练权重》教程,附代码
YOLOv8指标/写作 篇👉 将多种改进算法的Loss精度曲线图绘制到一张图上芒果YOLOv8改进46:写作篇:新增YOLOv8的实验对比Loss指标,即插即用,将多种改进算法的Loss精度曲线图绘制到一张图上,便于获取更多精度数据,丰富实验数据(内附源代码)
YOLOv8指标/写作 篇👉 YOLOv8实验对比COCOmAP指标芒果YOLOv8改进47:写作篇:新增YOLOv8实验对比COCOmAP指标,即插即用,输出自定义数据集中small、medium、large大中小目标的mAP值,适用于自定义数据集(内附源代码)
YOLOv8指标/写作 篇👉 自定义绘制性能对比折线图芒果YOLOv8改进51:SCI期刊写作必备篇:新增一键生成YOLOv8等主流模型同款图表|绘制目标检测领域YOLO论文常见的性能对比折线图,包含多种不同功能风格对比图表
YOLOv8指标/写作 篇👉 Baseline改进芒果YOLOv8改进53:提升篇:YOLOv8的Baseline改进:打造更方便版本NEW YOLOv8
YOLOv8指标/写作 篇👉 全方位角度改进芒果YOLOv8改进54:提升篇:YOLOv8改进代码原创大全集,全方位角度对YOLOv8模型进行改进,推荐
YOLOv8指标/写作 篇👉 持续更新ing持续更新ing
YOLOv8指标/写作 篇👉 图片可视化芒果YOLOv8改进85:写作篇:YOLOv8将检测图片进行可视化:效果超过YOLOv5模型,丰富改进模型的检测展示
YOLOv8指标/写作 篇👉 SAHI切片辅助芒果YOLOv8改进91:提升篇:YOLOv8使用SAHI切片辅助推理:《SAHI切片辅助推理解析》推理教程(附推理源代码)
YOLOv8指标/写作 篇👉 YOLOv8热力图芒果YOLOv8改进92:提升篇:深度集成版YOLOv8热力图来了!支持自定义数据集训练出来的模型
YOLOv8目标对象计数 篇👉 目标对象计数芒果YOLOv8改进90:多任务之目标对象计数篇:目标对象计数,深度集成版来了!支持自定义数据集训练自定义模型
YOLOv8改进 篇👉持续更新ing持续更新ing

 专栏地址👉 芒果YOLOv8改进专栏

 专栏地址👉 芒果YOLOv8改进专栏

【资源说明】 基于KLD损失结合yolov7-tiny的旋转目标检测系统源码+详细使用说明+模型.zip 目标检测模型 | 路径 | ## 性能情况 | 训练数据集 | 权值文件名称 | 测试数据集 | 输入图片大小 | mAP 0.5 | fps | | :-----: | :------: | :------: | :------: | :------: | :------: | | UAV-ROD | [yolov7_tiny_obb_uav]| UAV-ROD-Val | 640x640 | 98.00% | 50 | | UAV-ROD | [yolov7_tiny_trt]| UAV-ROD-Val | 640x640 | 97.75% | 120 | ### 预测结果展示 ![预测结果](img/test.jpg) ## 所需环境 cuda==11.3 torch==1.10.1 torchvision==0.11.2 为了使用amp混合精度,推荐使用torch1.7.1以上的版本。 ## 文件下载 UAV-ROD数据集下载地址如下,里面已经包括了训练集、测试集、验证集(与测试集一样),无需再次划分: 链接: https://pan.baidu.com/s/1Ae8AGb2L6zCjCwJFzs2WfA 提取码: ybec ## 训练步骤 ### a、训练VOC07+12数据集 1. 数据集的准备 **本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录** 2. 数据集的处理 修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。 生成的数据集格式为image_path, x1, y1, x2, y2, x3, y3, x4, y4(polygon), class。 3. 开始网络训练 train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。 4. 训练结果预测 训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。 **model_path指向训练好的权值文件,在logs文件夹里。 classes_path指向检测类别所对应的txt。** 完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。 ### b、训练自己的数据集 1. 数据集的准备 **本文使用VOC格式进行训练,训练前需要自己制作好数据集,** 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。 2. 数据集的处理 在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。 修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。 训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。 model_data/cls_classes.txt文件内容为: ```python cat dog ... ``` 修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。 3. 开始网络训练 **训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。** **classes_path用于指向检测类别 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值