Deep Item-based Collaborative Filtering for Top-N Recommendation 阅读心得

本文探讨了如何利用神经网络建模物品间的非线性和高阶关系,以提升推荐系统的性能。相较于传统的ItemCF方法,本文提出的模型能更好地捕捉用户兴趣,尤其在处理复杂决策过程时。通过引入注意力网络,模型性能得到进一步提升,实现了对用户未行为物品的精准预测。
摘要由CSDN通过智能技术生成

摘要

近年来,随着机器学习的流行,从数据中学习物品的相似性(或表示)已经成为ItenCF的一个重要部分。现有的itemcf的研究方法仅仅考虑了物品间的线性和浅层的关系,不能有效建模用户复杂的决策过程。文章提出了一种更具表现力的itemcf模型,考虑了物品间的非线性和高阶关系。模型通过非线性神经网络考虑所有交互物品对之间的交互作用。这样做的一个好处是模型可以区分用户交互过的所有物品中哪些物品对用户还未发生行为的一个物品的决策更加重要。文章还说通过融合更细粒度的注意力网络,模型的性能会进一步提高。

介绍

Cf分为UserCf和ItemCF两种方法,其中MF是经典的usercf方法。ItemCF通过用户交互过得所有物品表达用户的兴趣信息,利用目标物品和用户交互过得物品之间的相似性来估计目标物品和用户的相关性。

Itemcf的优势:

Itemcf在很多方面要优于usercf。首先,itemcf通过很多交互过得物品信息来建模用户的兴趣,相比于MF只是通过一个用户ID建模用户的兴趣信息,itemcf建模的输入信号要更广泛,来源更多。这很有可能导致itemcf比usercf在建模用户的兴趣信息上更准确和更具有可解释性。其次,ICF在用户兴趣建模中的可组合性使得在线个性化更容易实现,意思就是实时性更好,不需要一直更新模型的参数。早期的itemcf使用统计指标比如说皮尔逊系数或者余弦相似性来计算两个物品之间的相关性。这样做得手动调整参数不方便,泛化性很差。近几年来,以数据驱动的策略被用来学习物品之间的相关性,代表性方法有稀疏线性方法(SLIM)与分解物品相似模型(FISM),其中SLIM在稀疏性和非负性约束下直接学习物品相似性矩阵,

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值