一、深度学习的发展趋势
- 1958:Perceptron(linear model)
- 1969:Perceptron has limitation
- 1980:Multi-layer perceptron
- Do not have significant difference from DNN today
- 1986:Backpropagation
- Usually more than 3 hidden layers is not helpful
- 1989:1 hidden layer is “good enough”,why deep?
- 2006:RBM initialization(breakthrough)
- 2009:GPU
- 2011:Start to be popular in speech recognition
- 2012:win ILSVRC image competition感觉机(Perception)非常像我们的逻辑回归(Logistics Regression)只不过没有sigmoid激活函数。09年的GPU发展是很关键的,使用GPU矩阵运算节省了很多时间。
二、深度学习的三个步骤
- 之前我们学习机器学习相关的内容的时候,有三个step,对于deep learning其实也有3个步骤:
- Step1:神经网络(Neural Network)
- Step2:模型评估(Godness of function)
- Step3:选择最优函数(Pick best function)
2.1 Step1:神经网络
- 神经网络(Neural network)里面的节点,类似我们的神经元。神经网络也可以有很多不同的连接方式,这样就会产生不同的结构(structure)在这个神经网络里面,我们有很多逻辑回归函数,其中每个逻辑回归都有自己的权重和自己的偏差,这些权重和偏差就是参数。这些神经元的连接方式是我们手动去设计的。
2.1.1 完全前馈神经网络(Fully Connect Feedforward Network)
- 概念:前馈(feedforward)也可以称为前向,从信号流来理解就是输入信号进入网络后,信号流动是单向的,即信号从前一层流向后一层,一直到输出层,其中任意两层之间的连接并没有反馈(feedback),即信号没有从后一层又返回到前一层。
- 当已知权重和偏差时输入(1, -1)的结果
- 当已知权重和偏差时输入(-1, 0)的结果
- 当输入0和0时候,得到0.51和0.85,所以一个神经网络如果权重和偏差都知道的话就可以看成一个函数,他的输入是一个向量,对应的输出也是一个向量。不论是做回归模型(linear model)还是逻辑回归(logistics regression)都是定义了一个函数集(function set)。我们可以给上面的结构的参数设置为不同的数,就是不同的函数(function)。这些可能的函数(function)结合起来就是一个函数集(function set)。这个时候你的函数集(function set)是比较大的,是以前的回归模型(linear model)等没有办法包含的函数(function),所以说深度学习(Deep Learning)能表达出以前所不能表达的情况。
- 全连接和前馈的理解
- 输入层(Input Layer):1层
- 隐藏层(Hidden Layer):N层
- 输出层(Output Layer):1层
- 全连接:因为layer1和layer2之间两两都有连接,所以叫做Fully Connect;
- 前馈:因为现在传递的方向是由后往前,所以叫做Feedforward。
- 深度的理解
- 矩阵计算:随着层数变多,错误率降低,随之运算量增大,通常都是超过亿万级的计算。对于这样复杂的结构,我们一定不会一个一个的计算,对于亿万级的计算,使用loop循环效率很低。这里我们就引入矩阵计算(Matrix Operation)能使得我们的运算的速度以及效率高很多。
- 如下图所示,其中sigmoid更一般的来说是激活函数(activation function),现在已经很少用sigmoid来当做激活函数了。
- 当有很多层时,计算方法就像嵌套,结合了上一个图更好理解。所以整个神经网络运算就相当于一连串的矩阵运算。
- 从结构上看每一层的的计算都是一样的,也就是用计算机进行并行矩阵运算。这样写成矩阵运算的好处是,可以使用GPU加速。整个神经网络可以这样看:
- 本质:通过隐藏层进行特征转换
- 把隐藏层通过特征提取来替代原来的特征工程,这样在最后一个隐藏层输出的就是一组新的特征(相当于黑箱操作)而对于输出层,其实就是把前面的隐藏层的输出当作输入(经过特征提取得到的一组最好的特征)然后通过一个多分类器(可以是softmax函数)得到最后的输出y。
- 示例:手写数字识别
- 举一个手写数字识别的例子;输入:一个16*16=256维的向量,每个pixel对应一个dimension,有颜色用(ink)用1表示,没有颜色(no ink)用0表示。输出:10个维度,每个维度代表一个数字的置信度,从输出结果来看,每一个维度对应输出一个数字,是数字2的概率为0.7的概率最大。说明这张图片是2的可能性就是最大的
- 在这个问题中,唯一需要的就是一个函数,输入是256维的向量,输出是10维的向量,我们所需要求的函数就是神经网络这个函数
- 决定了函数集(function set),所以说网络结构(network structred)很关键
- 几个问题:
- 多少层?每层有多少神经元?这个问题需要我们尝试加上直觉的方法进行调试。对于有些机器学习相关的问题,我们一般用特征工程来提取特征,但是对于深度学习,我们只需要设计神经网络模型来进行就可以了。对于语音识别和影像识别,深度学习是个好的方法,因为特征工程特区特征并不容易。
- 结构可以自动确定吗?有很多设计方法可以让机器自动找到神经网络的结构的,比如进化人工神经网络(Evolutionary Artigicial Neural Networks)但是这些方法并不是很普及。
- 我们可以设计网络结构吗?可以的,比如CNN卷积神经网络(Convolutional Neural Network)
2.2 Step2:模型评估
2.2.1 损失示例
- 对于模型的评估,我们一般采用损失函数来反应模型的好坏,所以对于神经网络来说,我们采用交叉熵(cross entropy)函数来对y和的损失进行计算,接下来就我们就是调整参数,让交叉熵越小越好。
2.2.2 总体损失
- 对于损失,我们不单单要计算一笔数据,而是要计算整体所有训练数据的损失,然后把所有的训练数据的损失都加起来,得到一个总体损失L。接下来就是在function set里面找到一组函数能最小化这个总体损失L,或者找一组神经网络的参数,来最小化总体损失。
2.3 Step3:选择最优函数
- 如何找到最优的函数和最好的参数呢,我们用的就是梯度下降。
- 具体流程:是一组包含权重和偏差的参数集合,随机找一个初始值,接下来计算每个参数对应的偏微分,得到的一个偏微分的集合就是梯度,有了这些偏微分,我们就可以不断更新,就能得到一组最好的参数使得损失函数的值最小。
三、思考
- 为什么要用深度学习,深层架构带来哪些好处?是不是隐藏层越多越好?
3.1 隐藏层越多越好?
- 从下图来看是的
3.2 普遍性定理
- 参数多的model拟合数据很好是正常的。下面有一个通用的理论:对于任何一个连续的函数,都可以用足够多的隐藏层来表示。