常用的几种机器学习算法回归模型python代码实现

       由于在论文实验过程中一直使用的是python语言完成的论文实验,所以在论文需要使用机器学习方法时就考虑使用了scikit-learn。

        scikit-learn是一款很好的Python机器学习库,它包含以下的特点:

        (1)简单高效的数据挖掘和数据分析工具;

        (2)可供大家使用,可在各种环境中重复使用;

        (3)建立在NumPy, SciPy和matplotlib上;

        (4)开放源码,可商业使用;

scikit-learn官方英文使用文档地址:http://scikit-learn.org/stable/index.html

scikit-learn中文文档地址:http://sklearn.apachecn.org/cn/0.19.0/index.html

          在本文中将把我在论文实验过程中使用几种机器学习方法源码贴出来方便调用,但每种机器学习方法的原理就不赘述了,可以参考官方给出的文档。这几种方法使用的测试数据均为如下所示:


一、贝叶斯岭回归

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import preprocessing


from sklearn.naive_bayes import GaussianNB
from sklearn import linear_model


from sklearn import metrics


def Bayes(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)


	reg=linear_model.BayesianRidge()
	reg_=reg.fit(X_train, y_train)
	y_pred = reg.predict(X_test)
	return (X_test,y_pred)
x,y=Bayes("./test.xls")
print (x,y)

运行代码,可以看到结果如下所示:


二、Logistic回归

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import preprocessing


from sklearn.linear_model import LogisticRegression
from sklearn.svm import l1_min_c


from sklearn import metrics

def Logist(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)


	cls = LogisticRegression(C=1.0,tol=1e-6)
	rbf=cls.fit(X_train, y_train)
	y_pred = cls.predict(X_test)


	return (X_test,y_pred)
	
x,y=Logist("./test.xls")
print(x,y)

运行代码,可以看到结果如下所示:


三、多层感知器

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import preprocessing


from sklearn.linear_model import Perceptron


from sklearn import metrics


def Percep(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)


	per=Perceptron()
	rbf=per.fit(X_train, y_train)
	y_pred = per.predict(X_test)


	return (X_test,y_pred)


	#X=preprocessing.scale(X)
	#y=preprocessing.scale(y)
	
x,y=Percep("./test.xls")
print(x,y)

运行代码,可以看到结果如下所示:


四、支持向量机回归

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import svm
from sklearn import metrics
from sklearn import preprocessing

def SVM(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	#X=preprocessing.scale(X)
	#y=preprocessing.scale(y)
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)

	rbf_svc = svm.SVR(kernel='rbf')   #此处使用的是径向基内核
	rbf_svc.tol=1
	rbf=rbf_svc.fit(X_train, y_train)
	y_pred = rbf_svc.predict(X_test)

	return (X_test,y_pred)
	
x,y=SVM("./test.xls")
print(x,y)

运行代码,可以看到结果如下所示:


五、决策树回归

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import preprocessing


from sklearn import tree


def Tree(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	#X=preprocessing.scale(X)
	#y=preprocessing.scale(y)
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)


	clf = tree.DecisionTreeRegressor()
	rbf=clf.fit(X_train, y_train)
	y_pred = rbf.predict(X_test)


	return (X_test,y_pred)


	
x,y=Tree("./test.xls")
print(x,y)

运行代码,可以看到结果如下所示:


六、最近邻回归

import numpy as np
import pandas as pd
from sklearn import datasets, linear_model
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn import preprocessing


from sklearn import neighbors


from sklearn import metrics
from sklearn.model_selection import cross_val_predict


def KNN(path):
	data = pd.read_excel(path)
	data.dropna(inplace=True)
	array=data.values
	X=array[:,1:len(data.columns)-1]
	y=array[:,len(data.columns)-1]
	X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0)


	knn = neighbors.KNeighborsRegressor(1, weights="uniform")  //修改第一个参数的值可以变为KNN_N近邻
	knn=knn.fit(X_train, y_train)
	y_pred = knn.predict(X_test)


	return(X_test,y_pred)
	
x,y=KNN("./test.xls")
print(x,y)

运行代码,可以看到结果如下所示:


本文中的源代码下载地址:https://github.com/XiaoYaoNet/Machine-Learning

  • 35
    点赞
  • 135
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 下面是一个简单的逻辑回归分类算法的 Python 代码示例: ```python import numpy as np class LogisticRegression: def __init__(self, learning_rate=0.01, num_iterations=100000, fit_intercept=True): self.learning_rate = learning_rate self.num_iterations = num_iterations self.fit_intercept = fit_intercept def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def fit(self, X, y): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) # 初始化权重 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iterations): z = np.dot(X, self.theta) h = self.sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.theta -= self.learning_rate * gradient def predict_prob(self, X): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) return self.sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 这里我们定义了一个 `LogisticRegression` 类,它有以下几个方法: - `__init__`:初始化逻辑回归模型的超参数,包括学习率、迭代次数和是否拟合截距项。 - `sigmoid`:sigmoid 函数,用于将线性函数的输出转换为概率值。 - `fit`:训练模型的方法,使用梯度下降算法来更新权重。 - `predict_prob`:给定输入数据,返回模型预测的类别概率。 - `predict`:给定输入数据和阈值,返回模型预测的类别。 在使用时,首先需要创建一个 `LogisticRegression` 类的实例,然后调用 `fit` 方法来训练模型。训练完成后,可以使用 `predict_prob` 方法来预测类别的概率,或使用 `predict` 方法来预测具体的类别。 ### 回答2: 逻辑回归是一种常用机器学习算法,用于解决二分类问题。其基本原理是利用线性回归模型的预测结果通过一个sigmoid函数转换成0或1的概率值进行分类预测。 以下是一个简单的机器学习逻辑回归分类算法代码: 1. 导入所需的库: ```python import numpy as np from sklearn.linear_model import LogisticRegression ``` 2. 准备数据: ```python X = np.array([[x1, x2], [x1, x2], ..., [x1, x2]]) # 特征矩阵,每行代表一个样本的特征向量 y = np.array([y1, y2, ..., yn]) # 标签向量,表示每个样本的类别 ``` 3. 创建逻辑回归模型对象: ```python model = LogisticRegression() ``` 4. 使用训练数据进行模型训练: ```python model.fit(X, y) ``` 5. 对新样本进行分类预测: ```python new_sample = np.array([x1, x2]) # 待预测的新样本的特征向量 predicted_class = model.predict([new_sample]) # 预测样本的类别 ``` 以上是一个简单的机器学习逻辑回归分类算法的代码实现。要注意的是,在实际应用中,可能需要进行特征工程、数据预处理、模型评估等步骤来提高分类效果。此外,可以通过调整模型的参数,如正则化系数等,来优化模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值