双指针 | 动态规划:力扣392. 判断子序列

1、题目描述:

在这里插入图片描述

2、题解:

方法1:双指针
设置两个指针 left和right,left指向s,right指向t;
right遍历t,找与s对应相等的值,如果相等那就让left指针向后移动,
遍历结束后,判断left是否等于m。

class Solution:
    def isSubsequence(self, s: str, t: str) -> bool:
        #双指针
        if not s :return True
        m,n = len(s),len(t)
        left,right = 0,0
        while right < n:
            if left < m and right < n and s[left] == t[right]:
                left += 1
            right += 1
        return left == m

方法2:动态规划
动态规划问题,弄清楚三点:
1、重复子问题;
2、最优子结构;
3、无后效性。

动态规划:
1、状态定义;
2、状态转移方程;
3、初始化;base case
4、输出;
5、思考状态压缩。

可以用递归去求,但是会存在重叠子问题,加个备忘录可以解决重复问题。

状态定义:
dp[i][j],表示字符串t中从位置i开始往后字符j第一次出现的位置。
状态转移方程:
dp[i][j] = i if ord(t[i]) == j + ord('a') else dp[i+1][j]

Python代码如下:

class Solution:
    def isSubsequence(self, s: str, t: str) -> bool:
        #动态规划
        m,n = len(s),len(t)
        dp = [[0] * 26 for _ in range(n)]
        dp.append([n] * 26)
        for i in range(n - 1,-1,-1):
            for j in range(26):
                dp[i][j] = i if ord(t[i]) == j + ord('a') else dp[i+1][j]
        temp = 0
        for i in range(m):
            if dp[temp][ord(s[i]) - ord('a')] == n:
                return False
            temp = dp[temp][ord(s[i]) - ord('a')] + 1
        return True

3、复杂度分析:

方法1:
时间复杂度:O(M+N),M、N分别为s和t的长度。
空间复杂度:O(1)
方法2:
时间复杂度:O(M*K + N),K为字符集的长度
空间复杂度:O(M * K)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值