AI3周学习计划
第一周:基础学习
周一:了解AI概念和原理、机器学习、深度学习基础
- 介绍 AI 开发的基本概念和原理,了解机器学习、深度学习和神经网络等基础知识。
周二:学习Python基础知识
- 学习 Python 编程语言的基础知识,包括变量、数据类型、条件语句和循环等。
周三:学习Python函数、模块、文件操作
- 深入学习 Python 的函数、模块和文件操作等高级特性。
周四:了解常用的AI开发库
- 了解常用的 AI 开发库和框架,如 TensorFlow 或 PyTorch。
周五:学习机器学习
- 学习机器学习算法,例如线性回归、逻辑回归、决策树等。
周六:学习深度学习
- 深入了解深度学习的基本概念,如神经网络、反向传播算法等。
周日:项目实践
- 进行一个 AI 项目实践,例如使用 TensorFlow 搭建一个简单的神经网络模型。
第二周:
周一:学习数据预处理、数据清洗、特征
- 学习数据预处理的方法,包括数据清洗、特征选择和标准化等。
周二:了解监督、无监督基本概念、常用算法
- 了解监督学习和无监督学习的基本概念,以及常用的算法,如线性回归、决策树和聚类等。
周三:学习常见机器学习算法
- 学习常见的机器学习算法实现,如 KNN、SVM 和随机森林等。
周四:学习深度学习基本概念、常用算法
- 了解深度学习的基本概念和常用算法
周五:学习卷积神经网络基础知识
- 学习卷积神经网络(CNN)和基础知识
周六:学习循环神经网络基础知识
- 学习循环神经网络(RNN)的基础知识
周日:了解PyTorch框架使用
- 了解PyTorch等深度学习框架的使用。
第三周:
周一:了解自然语言处理
- 了解自然语言处理(NLP)的基础知识,包括文本表示、词嵌入和语言模型等。
周二:学习常见的NLP任务
- 学习常见的 NLP 任务,如情感分析、命名实体识别和机器翻译等。
周三:学习常用NLP工具库
- 学习常用的 NLP 工具和库,如 NLTK、spaCy 和 Transformers 等。
周四:项目实践
- 进行一个简单的 NLP 项目实践,例如使用情感分析模型对文本进行情感分类。
周五:学习增强学习的概念和算法
- 学习增强学习的基本概念和算法,了解马尔可夫决策过程(MDP)和 Q-learning 等。
周六:学习强化学习的概念和算法
- 学习强化学习的基本概念和算法,例如Q-learning、Actor-Critic等。
周日:学习强化库
- 学习使用 Python 的强化学习库 OpenAI Gym 进行强化学习算法的实现和训练。
结束语:每日更新学习资源链接