给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [2,4,1], k = 2 输出: 2 解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入: [3,2,6,5,0,3], k = 2 输出: 7 解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。 随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
股票问题汇总:
买卖股票的最佳时机 Ⅲ :https://blog.csdn.net/qq_38742161/article/details/89883780 限定交易次数为2
买卖股票的最佳时机 Ⅱ:https://blog.csdn.net/qq_38742161/article/details/89854766 不限定交易次数
买卖股票的最佳时机 Ⅰ:https://blog.csdn.net/qq_38742161/article/details/89854326 只允许交易一次
tips: 本题在 “ 买卖股票的最佳时机 Ⅲ ” 的基础上将交易次数以变量k表示。思路与其相同,采用动态规划,第一次的买入时的收益为当天价格的复数,但是第二次以后买入时的收益需要加上前一次卖出时的收益。
此外,当交易次数k超过股票列表的长度的一半时,问题等效于交易次数不限(买卖股票的最佳时机 Ⅱ),需要进行剪枝,否则超时。剪枝方法很简单:贪心算法。代码如下:
class Solution:
def maxProfit(self, k: int, prices: List[int]) -> int:
N=len(prices)
if not N or not k:
return 0
if k < N//2+1:
#动态规划
buy=[-prices[0] for _ in range(k)]
sell=[0 for _ in range(k)]
for p in prices:
buy[0]=max(buy[0],-p)
sell[0]=max(sell[0],p+buy[0])
for i in range(1,k):
buy[i]=max(buy[i],sell[i-1]-p)
sell[i]=max(sell[i],buy[i]+p)
return sell[-1]
else:
#交易次数超过天数的一半,可以采用贪心策略进行剪枝
res=0
for i in range(1,N):
res+=max(0,prices[i]-prices[i-1])
return res