Leetcode 188. 买卖股票的最佳时机 IV

给定一个数组,它的第 i 个元素是一支给定的股票在第 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [2,4,1], k = 2
输出: 2
解释: 在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

示例 2:

输入: [3,2,6,5,0,3], k = 2
输出: 7
解释: 在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
     随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。

股票问题汇总: 

买卖股票的最佳时机 Ⅲ :https://blog.csdn.net/qq_38742161/article/details/89883780  限定交易次数为2

 买卖股票的最佳时机 Ⅱ:https://blog.csdn.net/qq_38742161/article/details/89854766 不限定交易次数

 买卖股票的最佳时机 Ⅰ:https://blog.csdn.net/qq_38742161/article/details/89854326 只允许交易一次

tips: 本题在 “ 买卖股票的最佳时机 Ⅲ ” 的基础上将交易次数以变量k表示。思路与其相同,采用动态规划,第一次的买入时的收益为当天价格的复数,但是第二次以后买入时的收益需要加上前一次卖出时的收益。

此外,当交易次数k超过股票列表的长度的一半时,问题等效于交易次数不限(买卖股票的最佳时机 Ⅱ),需要进行剪枝,否则超时。剪枝方法很简单:贪心算法。代码如下:

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        N=len(prices)
        if not N or not k:
            return 0
        if k < N//2+1:
            #动态规划
            buy=[-prices[0] for _ in range(k)]
            sell=[0 for _ in range(k)]    
            for p in prices:
                buy[0]=max(buy[0],-p)
                sell[0]=max(sell[0],p+buy[0])
                for i in range(1,k):
                    buy[i]=max(buy[i],sell[i-1]-p)
                    sell[i]=max(sell[i],buy[i]+p)
            return sell[-1]
        else:
            #交易次数超过天数的一半,可以采用贪心策略进行剪枝
            res=0
            for i in range(1,N):
                res+=max(0,prices[i]-prices[i-1])
            return res

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值