传统神经网络存在的问题:
权值太多,计算量大需要大量样本进行训练
卷积神经网络cnn:
cnn通过感受野和权值共享减少了神经网络需要训练的参数个数
池化:大值与随机
same padding:给平面外部补0 valid padding:不会超过平面外部
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#每个批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size
#初始化权值
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)#生成一个截断的正态分布
return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
initial=tf.constant(0,1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')#二维卷积操作x:输入一个tensor给形状,W权值 strides:步长
#池化层
def max_pool_2x2(x):
return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#ksize:窗口大小
#定义俩个placeholder
x=tf.placeholder(tf.float32,[None,784])
y=tf.placeholder(tf.float32,[None,10])
#改变x的格式转为4D的向量[batch,in_height,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1])
#初始化第一个卷积层的权值和偏置
W_convl=weight_variable([5,5,1,32])#给5*5的采样窗口,32个卷积核从1 个平面抽取特征
b_convl=bias_variable([32])#每个卷积核一个偏置量
#把x_image和权值向量进行卷积,再加上偏置量,然后应用于relu激活函数
h_convl=tf.nn.relu(conv2d(x_image,W_convl)+b_convl)
h_pooll=max_pool_2x2(h_convl)#进行max-pooling
#初始化第2个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64])#给5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])#每个卷积核一个偏置量
#把h_pooll和权值向量进行卷积,再加上偏置量,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pooll,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2)#进行max-pooling
#28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化为7*7
#进行上面操作后的到64张7*7的平面
#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#上一场有7*7*64个神经元,全连接层有1024个单元
b_fc1=bias_variable([1024])#1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
#keep_prob用来表示神经元的输出频率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
#初始化第二个连接
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10])
#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
#交叉熵代价函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用Adamoptimizer进行优化
train_step=tf.train.AdadeltaOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))#argmax返回一维张量中最大的值所在位置
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(21):
for batch in range(n_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print("Iter"+str(epoch)+",Testing Accuracy"+str(acc))
951

被折叠的 条评论
为什么被折叠?



