椭圆的几何关系

本文介绍了椭圆的基本概念,焦点坐标及其焦距,阐述了长半轴、短半轴与偏心距之间的关系,重点讨论了偏心率的计算方法。同时,解释了椭圆的通径概念,即过焦点垂直于长轴的直线与椭圆相交的线段,并给出了半通径的表示。通过这些内容,读者将能深入理解椭圆的几何特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

椭圆的标准方程

\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\left ( a>b>0 \right )


1. 椭圆的焦点在x轴上,分别为O{}'=\left ( -c,0 \right )O=\left ( c,0 \right ),焦距\left | O-O{}' \right |=2c

2. 长半轴a(CP)、短半轴b(CD)和偏心距c(CO)的关系 

a^{2}=b^{2}+c^{2}

3. 偏心率e=\frac{c}{a} (0<e<1

 4. 短半轴b=a{\sqrt{1-e^{2}}}

5. 椭圆的通径就是过焦点垂直于长轴的直线与椭圆相交所得的线段。在图中OQ为半通径pp=\frac{b^{2}}{a}=a\left ( 1-e^{2} \right )

因此,短半轴b=a{\sqrt{1-e^{2}}}=\frac{p}{\sqrt{1-e^{2}}}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值