K-均值聚类

K-均值聚类是一种常见的无监督学习算法,可以将未标记的数据集划分为 k 个不同的类别。其基本思想是将数据集分为 k 个不同的簇,其中每个簇包含的数据点距离其所属簇的质心最近。

K-均值聚类算法是一种无监督的机器学习算法,用于将数据集分成 K 个互不重叠的簇。该算法将每个数据点分配到与它最接近的簇中心,然后重新计算簇中心,不断循环直到簇中心不再变化为止。

算法步骤:

  1. 随机初始化 k 个质心(中心点);
  2. 将每个数据点分配到离其最近的质心所在的簇;
  3. 重新计算每个簇的质心;
  4. 重复步骤2和3,直到质心不再变化或达到预定的迭代次数。

优点:

  1. 算法实现简单,易于理解和实现。

  2. 在处理大数据集时,K-均值算法是相对高效的。

  3. 对于簇分布比较均匀的数据集,该算法的表现较好。

缺点:

  1. K-均值算法需要事先确定簇的数量 K,但在通常情况下我们并不知道数据集的实际类别数。

  2. 算法对初值的选取非常敏感,可能会导致结果不够准确。

  3. 由于该算法只考虑了距离的度量,因此在处理非凸形状的簇时表现较差。

  4. 该算法容易受到噪声和离群点的影响,可能导致簇分配结果不够准确。

因此,在使用K-均值聚类算法时,需要对数据集有一定的先验知识,包括数据类型、数据分布、簇的数量等。同时,为了减少算法的局限性,在实际应用过程中可以使用一些改进的算法,如K-Medoids,Bisecting K-Means等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西乡塘打工人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值