K-均值聚类是一种常见的无监督学习算法,可以将未标记的数据集划分为 k 个不同的类别。其基本思想是将数据集分为 k 个不同的簇,其中每个簇包含的数据点距离其所属簇的质心最近。
K-均值聚类算法是一种无监督的机器学习算法,用于将数据集分成 K 个互不重叠的簇。该算法将每个数据点分配到与它最接近的簇中心,然后重新计算簇中心,不断循环直到簇中心不再变化为止。
算法步骤:
- 随机初始化 k 个质心(中心点);
- 将每个数据点分配到离其最近的质心所在的簇;
- 重新计算每个簇的质心;
- 重复步骤2和3,直到质心不再变化或达到预定的迭代次数。
优点:
-
算法实现简单,易于理解和实现。
-
在处理大数据集时,K-均值算法是相对高效的。
-
对于簇分布比较均匀的数据集,该算法的表现较好。
缺点:
-
K-均值算法需要事先确定簇的数量 K,但在通常情况下我们并不知道数据集的实际类别数。
-
算法对初值的选取非常敏感,可能会导致结果不够准确。
-
由于该算法只考虑了距离的度量,因此在处理非凸形状的簇时表现较差。
-
该算法容易受到噪声和离群点的影响,可能导致簇分配结果不够准确。
因此,在使用K-均值聚类算法时,需要对数据集有一定的先验知识,包括数据类型、数据分布、簇的数量等。同时,为了减少算法的局限性,在实际应用过程中可以使用一些改进的算法,如K-Medoids,Bisecting K-Means等。