如何理解交叉熵恒大于或等于0?

如何理解交叉熵恒大于或等于0?

看了很多博客,我发现它们都基本上是以一个定义的形式,直接告诉我们(或者不提及)交叉熵它是恒大于等于0的,没有解释为什么。

可参考的部分优质博客

如果想要了解什么是熵及变形总结,可以参考博客:机器学习笔记十:各种熵总结,里面讲的非常详细。
这里要说的是交叉熵为什么恒大于等于0

如果数学功底好的,可以参考PRML书中公式(1.118)KL散度恒大于等于 0的推导,它同样可以解释交叉熵。
如果你英文好可以直接参考视频【 深度学习 】熵,交叉熵,KL散度 Entropy, Cross-Entropy and KL-Divergence(英文),里面对熵等内容讲解的也很详细。

我对交叉熵恒大于等于0的理解

这里我们首先要知道,交叉熵通常被用来解决分类问题

交叉熵公式:
H ( p , q ) = − ∑ x p ( x ) log ⁡ q ( x )   . \Eta(p,q) = -\sum_x p(x) \log q(x)\,. H(p,q)=xp(x)logq(x).

其中p(x)为真实概率分布,q(x)为预测概率分布
以二分类为例,x为正类时p(x)值为1,则
H ( p , q ) = − 1 ∗ log ⁡ q ( x ) − 0 ∗ log ⁡ q ( x ) = − log ⁡ q ( x )   . \Eta(p,q) = - 1* \log q(x)-0* \log q(x)=- \log q(x)\,. H(p,q)=1logq(x)0logq(x)=logq(x).
我们知道q(x)为预测概率分布
0 ≤ q ( x ) ≤ 1   . 0\leq q(x)\leq 1\,. 0q(x)1.
所以
H ( p , q ) ≥ 0   . \Eta(p,q) \ge 0\,. H(p,q)0.

最后分享两个LaTex公式符号对照博客
LaTeX各种符号
Latex之希腊字母表 花体字母 实数集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值