交叉熵误差(cross entropy error)

本文探讨了熵在机器学习中的重要性,特别是在决策树、神经网络和logistic回归中的应用。介绍了熵的定义,以及交叉熵误差作为损失函数的三大优势:真实反映分类误差、与softmax及sigmoid函数复合后的凸性,以及优化过程中简洁的一阶导数。通过这些性质,交叉熵误差简化了模型训练和求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

熵真是一个神奇的东西,据说之所以把它命名为熵就是因为它难以理解

但是它确实是一个很有用的西东,光机器学习里面,就经常见到它的身影,决策树要用到它,神经网络和logistic回归也用到了它。

先说熵的定义:

熵定义为信息的期望,某个待分类事物可以划分为多个类别,其中类别x_{i}的信息为(p(x_{i})x_{i}的概率):

l(x_{i})=-log_{2}p(x_{i})

熵为所有类别的信息期望值:
H=-\sum _{i=1}^{n}p(x_{i})log_{2}p(x_{i})

交叉熵误差:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值