熵真是一个神奇的东西,据说之所以把它命名为熵就是因为它难以理解
但是它确实是一个很有用的西东,光机器学习里面,就经常见到它的身影,决策树要用到它,神经网络和logistic回归也用到了它。
先说熵的定义:
熵定义为信息的期望,某个待分类事物可以划分为多个类别,其中类别的信息为(
为
的概率):
熵为所有类别的信息期望值:
交叉熵误差:
熵真是一个神奇的东西,据说之所以把它命名为熵就是因为它难以理解
但是它确实是一个很有用的西东,光机器学习里面,就经常见到它的身影,决策树要用到它,神经网络和logistic回归也用到了它。
先说熵的定义:
熵定义为信息的期望,某个待分类事物可以划分为多个类别,其中类别的信息为(
为
的概率):
熵为所有类别的信息期望值:
交叉熵误差: