Helen人脸数据集生成人脸分割

Helen人脸数据集包括2330张人脸图像,并且每张人脸图像包含11个部位的掩模,通常做人脸分割只需要面部以及面部特征掩模即可。数据集文件的整体结构如下:
在这里插入图片描述
依赖的库:

import os
import cv2 as cv
import numpy as np

定义人脸分割不同部位的颜色:

colors = [[160, 0, 10], [11, 138, 19], [11, 138, 19], [21, 83, 184], [21, 83, 184], [33, 182, 151], [255, 16, 16], [88, 13, 13], [255, 16, 16]]

在这里插入图片描述
其中掩模的第一张图像是背景,掩模的最后一张图像是头发,如果只需要脸部特征掩模那么我们只需要9张掩模图像即9种不同的分割颜色。

img_list = os.listdir('./images/')
masks_dir = os.listdir('./labels/')

for i in range(len(masks_dir)):
    images = os.listdir(os.path.join('./labels/', masks_dir[i]))
    raw = cv.imread(os.path.join('./labels/', masks_dir[i]+'/'+images[-1]))
    h, w, _ = raw.shape
    src_img = np.zeros((h, w, 3), dtype=np.uint8)
    
    # 9个不同人脸关键部位的分割生成
    for j in range(1, 10):
        mask = cv.imread(os.path.join('./labels/', masks_dir[i]+'/'+images[j]))
        
		# 掩模是灰度图像, 需要将像素值映射到[0,1]区间
		mask = mask / 255.
        h, w, _ = mask.shape

		# 0.85是分割阈值,选取的阈值越大生成的人脸关键部位的分割面积越小,反之越大。
        mask = (mask > 0.85)[:, :, 0]

        color_mask = np.zeros((h, w, 3), dtype=np.uint8)
        mv = cv.split(color_mask)  # 通道分离


        mv[2][mask == 1], mv[1][mask == 1], mv[0][mask == 1] = colors[j-1]
        color_mask = cv.merge(mv)  # 通道合并
        src_img = src_img + color_mask # 不同部位分割依次叠加
    
    cv.imwrite(os.path.join('./segmentation/', masks_dir[i]+'.png'), src_img)

生成的人脸分割如下:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值